HIP-KNEE PASSIVE EXOSKELETON DEVICE BASED ON CLUTCH TIME-SHARING CONTROL

    公开(公告)号:US20200085667A1

    公开(公告)日:2020-03-19

    申请号:US16414926

    申请日:2019-05-17

    Abstract: The disclosure belongs to the technical field of lower limb exoskeleton, and specifically discloses a hip-knee passive exoskeleton device based on clutch time-sharing control, comprising a waist support subassembly, connection subassemblies, thigh subassemblies, clutch subassemblies, shank subassemblies and elastic member subassemblies, the waist support subassembly is configured to be connected to the waist, the connection subassemblies are configured to include two connection subassemblies which are arranged in bilateral symmetry on two sides of the support subassembly, the thigh subassemblies are configured to include two thigh subassemblies which are respectively connected to the two connection subassemblies, the clutch subassemblies are configured to include two clutch subassemblies which are respectively mounted on the two thigh subassemblies, the shank subassemblies are configured to include two shank subassemblies which are arranged in bilateral symmetry below the two thigh subassemblies, the elastic member subassemblies are configured to include two elastic member subassemblies which are arranged in bilateral symmetry. The disclosure can assist the movements of the knee and hip joints, thereby improving the energy utilization efficiency and reducing the metabolic energy consumption of walking.

    Knee joint power generation device based on bidirectional ball screw drive and application thereof

    公开(公告)号:US11045334B2

    公开(公告)日:2021-06-29

    申请号:US16448641

    申请日:2019-06-21

    Abstract: The present disclosure discloses a knee joint power generation device based on bidirectional ball screw drive, and belongs to the field of biomechanical energy harvesting. The power generation device converts the rotary motion of the knee joint during human movement into a linear motion of the rope by the rope driving device, and then converts the linear motion into a rotary motion through a bidirectional ball screw to directly act on the motor, thereby converting the human biological energy into electric energy in the whole process to achieve power generation. The power generation device of the disclosure can meet the requirements of normal power generation during high-speed running and low-speed walking, has long-term high-efficiency and stable performance, can be easily worn on different people, has light overall weight and costs less loss of human walking metabolism.

    Upper limb exoskeleton rehabilitation device with man-machine motion matching and side-to- side interchanging

    公开(公告)号:US10987271B2

    公开(公告)日:2021-04-27

    申请号:US16172038

    申请日:2018-10-26

    Abstract: An upper limb exoskeleton rehabilitation device having man-machine motion matching and side-to-side interchanging, includes a chassis bracket assembly, a shoulder girdle abduction assembly, a side-to-side interchanging assembly and a mechanical arm coupling member. The chassis bracket assembly includes a frame and a lifting unit mounted on the frame. The shoulder girdle abduction assembly is mounted on the lifting unit to be driven by the lifting unit to move up and down. The side-to-side interchanging assembly is rotatably connected to the shoulder girdle abduction assembly and the mechanical arm coupling member, and the mechanical arm coupling member is configured to mount the mechanical arm and drive the mechanical arm to rotate with the respective rotating joints. Through an upper locking assembly and a lower locking assembly mounted on the side-to-side interchanging assembly, the side-to-side interchanging assembly is fixed or rotated relative to the shoulder girdle abduction assembly and the mechanical arm coupling member.

    Gravity balancing device for rehabilitation robot arm

    公开(公告)号:US11241354B2

    公开(公告)日:2022-02-08

    申请号:US16156605

    申请日:2018-10-10

    Abstract: The present invention discloses a gravity balancing device for a rehabilitation robot arm, and belongs to the field of rehabilitation robots. The gravity balancing device includes a shoulder joint connecting member, an upper arm connecting member and a gravity balancing assembly; the shoulder joint connecting member and the upper arm connecting member are pivotally connected according to the human body bionic structure to simulate the rotational movement of the upper arm of the human body around the shoulder joint; the gravity balancing assembly includes a plurality of springs, wire ropes and guide pulleys, the wire ropes connect the springs to the shoulder joint connecting member and the upper arm connecting member, the spring tension is used to balance the gravity of the arm, and the guide pulleys are used to change the force directions of the wire ropes, thereby saving space and making the device structure more compact. Further, by locking different guide pulleys, the arm gravity can be still balanced by the spring tension after switching of the rehabilitation robot between the left and right hand training modes, thereby ensuring that the robot can still work normally after the training mode is switched.

    Hip-knee passive exoskeleton device based on clutch time-sharing control

    公开(公告)号:US11638673B2

    公开(公告)日:2023-05-02

    申请号:US16414926

    申请日:2019-05-17

    Abstract: The disclosure belongs to the technical field of lower limb exoskeleton, and specifically discloses a hip-knee passive exoskeleton device based on clutch time-sharing control, comprising a waist support subassembly, connection subassemblies, thigh subassemblies, clutch subassemblies, shank subassemblies and elastic member subassemblies, the waist support subassembly is configured to be connected to the waist, the connection subassemblies are configured to include two connection subassemblies which are arranged in bilateral symmetry on two sides of the support subassembly, the thigh subassemblies are configured to include two thigh subassemblies which are respectively connected to the two connection subassemblies, the clutch subassemblies are configured to include two clutch subassemblies which are respectively mounted on the two thigh subassemblies, the shank subassemblies are configured to include two shank subassemblies which are arranged in bilateral symmetry below the two thigh subassemblies, the elastic member subassemblies are configured to include two elastic member subassemblies which are arranged in bilateral symmetry. The disclosure can assist the movements of the knee and hip joints, thereby improving the energy utilization efficiency and reducing the metabolic energy consumption of walking.

Patent Agency Ranking