Abstract:
Device and process for converting a feedstock of aromatic compounds, in which the feedstock is notably treated using a fractionation train (4-7), a xylenes separating unit (10) and an isomerization unit (11), and in which a pyrolysis unit (13) treats a second hydrocarbon-based feedstock, produces a pyrolysis effluent feeding the feedstock, and produces a pyrolysis gas comprising CO, CO2 and H2; a WGS water gas shift reaction section (50) suitable for treating the pyrolysis gas and for producing a WGS gas enriched in CO2 and in hydrogen; a CO2 aromatization reaction section (52) suitable for: at least partly treating the WGS gas to produce a hydrocarbon effluent comprising aromatic compounds, and feeding the feedstock with the hydrocarbon effluent.
Abstract:
The invention concerns a method for converting heavy hydrocarbon feedstocks of which at least 50% by weight boils at a temperature of at least 300° C., and in particular vacuum residues. The feedstocks are subjected to a first step a) of deep hydroconversion, optionally followed by a step b) of separating a light fraction, and a heavy residual fraction is obtained from step b) of which at least 80% by weight has a boiling temperature of at least 250° C. Said fraction from step b) or the effluent from step a) is then subjected to a second step c) of deep hydroconversion. The overall hourly space velocity for steps a) to c) is less than 0.1 h−1. The effluent from step c) is fractionated to separate a light fraction. The heavy fraction obtained, of which 80% by weight boils at a temperature of at least 300° C., is sent to a deasphalting step e). The deasphalted fraction DAO is then preferably converted in a step f) chosen from ebullated bed hydroconversion, fluidised bed catalytic cracking and fixed bed hydrocracking.
Abstract:
Process for converting a heavy hydrocarbon feedstock with initial boiling point of at least 300° C. comprising: a) hydroconverting at least part of said feedstock; b) separating the effluent from stage a) to obtain light and heavy liquid fractions; c) at least two stages of deasphalting in series at least part of the heavy liquid fraction originating from stage b), allowing to separate at least one fraction of asphalt, at least one fraction of heavy deasphalted oil (heavy DAO) and at least one fraction of light deasphalted oil (light DAO), at least one deasphalting stage being carried out using a mixture of at least one polar solvent and at least one apolar solvent, said deasphalting stages being under subcritical conditions of the mixture of solvents; d) recycling at least part of said heavy deasphalted oil cut from stage c) upstream of hydroconverting a) and/or of the inlet of separating b).
Abstract:
The present invention describes a process for catalytic cracking associated with a unit for amine treatment of regeneration fumes from the catalytic cracking unit, which process uses at least one counter-pressure turbine to operate the cracked gas compressor and/or the regenerative air blower which can be used to improve the CO2 balance by delivering a CO2 credit.
Abstract:
Device and process for the conversion of a feedstock of aromatic compounds, in which the feedstock is treated notably by means of a fractionation train (4-7), a xylene separation unit (10) and an isomerization unit (11), and in which a pyrolysis unit (13) treats a second hydrocarbon feedstock, produces a pyrolysis effluent feeding the feedstock, and produces a pyrolysis gas comprising CO, CO2 and H2; a reverse water gas shift RWGS reaction section (50) treats the pyrolysis gas and produces an RWGS gas enriched in CO and in water; a fermentation reaction section (52) treats the RWGS gas enriched in CO and in water, to produce ethanol and recycle the ethanol to the inlet of the pyrolysis unit.
Abstract:
Apparatus and process for converting aromatic compounds, comprising/using: a fractionating train (4-7) suitable for extracting at least one benzene-comprising fraction (22), one toluene-comprising fraction (23) and one fraction (24) comprising xylenes and ethylbenzene from the feedstock (2); a xylene separating unit (10) suitable for treating the fraction comprising xylenes and ethylbenzene and producing a para-xylene-comprising extract (39) and a raffinate (40) comprising ortho-xylene, meta-xylene and ethylbenzene; an isomerizing unit (11) for treating the raffinate and producing a para-xylene-enriched isomerizate (42), which is sent to the fractionated train; and an alkylating reaction section (13) for treating at least part of the benzene-comprising fraction with an ethanol source (30) and producing an alkylation effluent (31) comprising ethylbenzene, which is sent to the isomerizing unit.
Abstract:
A process is described for producing a BTX cut from biomass comprising at least one step of catalytic pyrolysis of said biomass in a fluidized-bed reactor in which a stream comprising at least one oxygenated compound selected from alcohols having 2 to 12 carbon atoms, alcohol acids having 2 to 12 carbon atoms, diols having 2 to 12 carbon atoms, carboxylic acids having 2 to 12 carbon atoms, ethers having 2 to 12 carbon atoms, aldehydes having 2 to 12 carbon atoms, esters having 2 to 12 carbon atoms and glycerol, alone or mixed, is fed into the catalytic pyrolysis reactor.
Abstract:
A process is described for producing BTX and alcohols from biomass, by a) catalytic pyrolysis of the biomass in a fluidized-bed reactor producing a gaseous pyrolysis effluent; b) separation of said gaseous pyrolysis effluent into at least one BTX fraction and a gaseous effluent containing at least carbon monoxide and carbon dioxide, c) sending all of the gaseous effluent from separation b) into fermentation producing a liquid fermentation stream containing at least one stream containing at least one oxygenated compound chosen from alcohols, diols, acid alcohols, carboxylic acids, aldehydes, ketones and esters, d) separating the fermentation stream obtained on conclusion of c) into at least the stream containing at least one oxygenated compound, an aqueous fraction, and an unreacted gaseous effluent, e) recycling at least part of unreacted gaseous effluent into the catalytic pyrolysis a).
Abstract:
The present invention describes a process for heating the reboiler of the propane/propylene separation column situated downstream of an FCC unit and fed with the C3 cut from said FCC unit, a process consisting of heating the water in a hot water circuit by means of one or more process fluids originating from units placed upstream and/or downstream of the FCC unit and called hot fluids, one of these fluids being constituted by the overhead vapours from the fractionation column connected to the mild hydrocracking unit.
Abstract:
The present invention describes a process for catalytic cracking associated with a unit for amine treatment of regeneration fumes from the catalytic cracking unit, which process uses at least one counter-pressure turbine to operate the cracked gas compressor and/or the regenerative air blower which can be used to improve the CO2 balance by delivering a CO2 credit.