Abstract:
A method for hydrogen evolution by electrolysis includes soaking a membrane electrode assembly into an alkaline aqueous solution. The membrane electrode assembly includes an anode having a first catalyst layer on a first gas-liquid diffusion layer, a cathode having a second catalyst layer on a second gas-liquid diffusion layer, and a cationic exchange membrane between the first catalyst layer of the anode and the second catalyst layer of the cathode. The first catalyst layer, the second catalyst layer, or both of the above has a chemical structure of MxRuyN2, wherein M is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn, 0
Abstract:
A method for manufacturing catalyst material is provided, which includes putting an M′ target and an M″ target into a nitrogen-containing atmosphere, in which M′ is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn, and M″ is Nb, Ta, or a combination thereof. Powers are provided to the M′ target and the M″ target, respectively. Providing ions to bombard the M′ target and the M″ target to sputtering deposit M′aM″bN2 on a substrate, wherein 0.7≤a≤1.7, 0.3≤b≤1.3, and a+b=2, wherein M′aM″bN2 is a cubic crystal system.
Abstract:
A method for manufacturing nitride catalyst is provided, which includes putting a Ru target and an M target into a nitrogen-containing atmosphere, in which M is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn. The method also includes providing powers to the Ru target and the M target, respectively. The method also includes providing ions to bombard the Ru target and the M target for depositing MxRuyN2 on a substrate by sputtering, wherein 0
Abstract:
A membrane electrode assembly includes an anode having a first catalyst layer on a first gas-liquid diffusion layer, a cathode having a second catalyst layer on a second gas-liquid diffusion layer, and an anionic exchange membrane between the first catalyst layer of the anode and the second catalyst layer of the cathode. The first catalyst layer has a chemical structure of M′aM″bN2 or M′cM″dCe, wherein M′ is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn, M″ is Nb, Ta, or a combination thereof, 0.7≤a≤1.7, 0.3≤b≤1.3, a+b=2, 0.24≤c≤1.7, 0.3≤d≤1.76, and 0.38≤e≤3.61, wherein M′aM″bN2 is a cubic crystal system and M′cM″d Ce is a cubic crystal system or amorphous.
Abstract:
A method for hydrogen evolution by electrolysis includes soaking a membrane electrode assembly into an alkaline aqueous solution. The membrane electrode assembly includes an anode having a first catalyst layer on a first gas-liquid diffusion layer, a cathode having a second catalyst layer on a second gas-liquid diffusion layer, and a cationic exchange membrane between the first catalyst layer of the anode and the second catalyst layer of the cathode. The first catalyst layer, the second catalyst layer, or both of the above has a chemical structure of MxRuyN2, wherein M is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn, 0
Abstract:
A method for manufacturing nitride catalyst is provided, which includes putting a Ru target and an M target into a nitrogen-containing atmosphere, in which M is Ni, Co, Fe, Mn, Cr, V, Ti, Cu, or Zn. The method also includes providing powers to the Ru target and the M target, respectively. The method also includes providing ions to bombard the Ru target and the M target for depositing MxRuyN2 on a substrate by sputtering, wherein 0
Abstract:
An embodiment provides a manufacturing method for a porous carbon material including: preparing a first solution including a surfactant, a carbon source material and a solvent; pouring the first solution into a silica sol aqueous solution to form a second solution; preparing a silicate aqueous solution; pouring the silicate aqueous solution into the second solution to form a third solution and to precipitate out an intermediate, wherein the intermediate includes the surfactant, the carbon source material and a silica template; performing a heating process on the intermediate to carbonize the intermediate; and removing the silica template of the carbonized intermediate to form a porous carbon material. Another embodiment of the disclosure provides a porous carbon material. The other embodiment provides a supercapacitor.