Abstract:
The present invention relates to a method of controlling an ion implanter having a plasma power supply AP and a substrate power supply, the substrate power supply comprising: an electricity generator; a first switch SW1 connected between the generator and the output terminal of the substrate power supply; and a second switch SW2 connected between the output terminal and a neutralization terminal; the method including an implantation stage A-D and a neutralization stage E-H. The method also includes a relaxation stage C-F overlapping the implantation stage and the neutralization stage, during which relaxation stage the plasma power supply is inactivated. Furthermore, the neutralization stage includes a preliminary step E-F for closing the second switch, this preliminary step being followed by a cancellation step F-G for activating the plasma power supply AP.
Abstract:
A MOSFET device arranged on a substrate 10 having first and second heavily-doped strips 11 and 14 respectively covered by first and second contacts 13 and 15, these two strips being spaced apart by a channel 18 that also appears on the substrate 10, the channel being covered by a dielectric layer 20, itself surmounted by a third contact 21. The channel 18 incorporates a thin film 19 lightly doped with dopant atoms of a same type as the channel, at the interface with the dielectric layer 20, the dopant atoms being distributed on both sides of the interface.
Abstract:
The present invention provides a support that comprises: an electrically conductive biased table; an insulating electrostatic substrate carrier 20 in the form of a cylinder having a shoulder 21, the bottom face of the substrate carrier 20 facing the biased table and its top face 22 presenting a bearing plane designed to receive a substrate; and an electrically conductive clamping collar for clamping the shoulder 21 against the biased table. The support also has at least one electrically conductive element 201-202-203 for connecting the bearing plane to the shoulder 211.
Abstract:
A control module for an ion implanter having a power supply, the power supply comprising: an electricity generator HT having its positive pole connected to ground; a first switch SW1 having its first pole connected to the negative pole of the generator HT and having its second pole connected to the outlet terminal S of the power supply; and a second switch SW2 having its first pole connected to the outlet terminal S and having its second pole connected to a neutralization terminal N. The control module also comprises a current measurement circuit AMP for measuring the current that flows between the second pole of the second switch SW2 and the neutralization terminal N.
Abstract:
The present invention relates to a support comprising: an electrically conductive biased table (10) connected to a high voltage power supply (12) and supported on an electrically insulating stand (40); an electrically insulating substrate carrier (20) in the form of a cylinder, its top face presenting a bearing plane designed to receive a substrate (50); legs (15) standing on the biased table (10) in order to support the bottom face of the substrate carrier (20); and at least one electrically conductive connection (201, 202, 203, 31, 30) for connecting the bearing plane to the biased table (10). The support is remarkable in that the substrate carrier (20) incorporates a heating resistance (26).
Abstract:
The present invention relates to an ion implantation machine 100 that comprises: an enclosure 101 that is connected to a pump device 102; a plasma source 115-121-122; a bias power supply 113; a gas inlet 117 leading into the enclosure; and a substrate-carrier 104 connected to the negative pole of the bias power supply and arranged inside the enclosure. The machine is remarkable in that: the substrate-carrier 104 consists in at least two parallel plates 105-106; a reference electrode consists in at least one strip 110, this reference electrode being connected to the positive pole of the bias power supply; and the strip is interposed between the two plates.
Abstract:
The invention relates to an ion implanter that comprises an enclosure ENV having arranged therein a substrate carrier PPS connected to a substrate power supply ALT via a high voltage electrical passage PET, the enclosure ENV being provided with pump means PP, PS, the enclosure ENV also having at least two cylindrical source bodies CS1, CS2 free from any obstacle and arranged facing the substrate carrier. This implanter is remarkable in that it includes at least one confinement coil BCI1-BCS1, BCI2-BCS2 per source body CS1, CS2.
Abstract:
The present invention relates to a control module for an ion implanter having a power supply, the power supply comprising: an electricity generator HT having its positive pole connected to ground; a first switch SW1 having its first pole connected to the negative pole of the generator HT and having its second pole connected to the outlet terminal S of the power supply; and a second switch SW2 having its first pole connected to the outlet terminal S and having its second pole connected to a neutralization terminal N. The control module also comprises a current measurement circuit AMP for measuring the current that flows between the second pole of the second switch SW2 and the neutralization terminal N. The invention also provides an ion implanter fitted with this control module.
Abstract:
The present invention relates to a method of controlling an ion implanter having a plasma power supply AP and a substrate power supply, the substrate power supply comprising: an electricity generator; a first switch SW1 connected between the generator and the output terminal of the substrate power supply; and a second switch SW2 connected between the output terminal and a neutralization terminal; the method including an implantation stage A-D and a neutralization stage E-H. The method also includes a relaxation stage C-F overlapping the implantation stage and the neutralization stage, during which relaxation stage the plasma power supply is inactivated. Furthermore, the neutralization stage includes a preliminary step E-F for closing the second switch, this preliminary step being followed by a cancellation step F-G for activating the plasma power supply AP.
Abstract:
The present invention provides a support that comprises: an electrically conductive biased table; an insulating electrostatic substrate carrier 20 in the form of a cylinder having a shoulder 21, the bottom face of the substrate carrier 20 facing the biased table and its top face 22 presenting a bearing plane designed to receive a substrate; and an electrically conductive clamping collar for clamping the shoulder 21 against the biased table. The support also has at least one electrically conductive element 201-202-203 for connecting the bearing plane to the shoulder 211.