Abstract:
Heat spreading substrate. In accordance with an embodiment of the present invention, an apparatus includes a thermally conductive, electrically insulating regular solid, a first electrically conductive coating mechanically coupled to a first edge of the regular solid and a second electrically conductive coating mechanically coupled to a second edge of the regular solid. The first and the second electrically conductive coatings are electrically isolated from one another and the faces of the first electrically conductive coating, the second electrically conductive coating and the regular solid are substantially co-planar. The primary and secondary surfaces of the regular solid may be free of electrically conductive materials.
Abstract:
Embodiments relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and, in particular, to a wearable device implementing a touch-sensitive interface in a metal pod cover and/or bioimpedance sensing to determine physiological characteristics, such as heart rate. According to an embodiment, a wearable device includes a selectably opaque surface configured to emit arrangements of light to form a display, and a touch-sensitive I/O control circuit coupled to the selectably opaque surface to detect a capacitance value as an input signal to modify the display. Also, the wearable device can include one or more straps coupled to a wearable pod, at least one of the one or more straps including electrodes for sensing a physiological characteristic. A display controller can be configured to display a representation as a function of a value of the physiological characteristic via the selectably opaque surface.
Abstract:
Barrier layers for use in electrical applications. In some embodiments the barrier layer is a laminated barrier layer. In some embodiments the barrier layer includes a graded barrier layer.
Abstract:
An interconnection element is disclosed that includes a plurality of drawn metal conductors, a dielectric layer, and opposed surfaces having a plurality of wettable contacts thereon. The conductors may include grains having lengths oriented in a direction between the first and second ends of the conductors. A dielectric layer for insulating the conductors may have first and second opposed surfaces and a thickness less than 1 millimeter between the first and second surface. One or more conductors may be configured to carry a signal to or from a microelectronic element. First and second wettable contacts may be used to bond the interconnection element to at least one of a microelectronic element and a circuit panel. The wettable contacts may match a spatial distribution of element contacts at a face of a microelectronic element or of circuit contacts exposed at a face of component other than the microelectronic element.
Abstract:
A microelectronic image sensor assembly for backside illumination and method of making same are provided. The assembly includes a microelectronic element having contacts exposed at a front face and light sensing elements arranged to receive light of different wavelengths through a rear face. A semiconductor region has a first thickness between the first light sensing element and the rear face and a second thickness between the second light sensing element and the rear face such that the first and second light sensing elements receive light of substantially the same intensity. A dielectric region is provided at least substantially filling a space of the semiconductor region adjacent at least one of the light sensing elements. The dielectric region may include at least one light guide.
Abstract:
An interconnection component includes an element with an opening, a plurality of conductors electrically insulted from one another extending through the opening, and a plurality of second contacts electrically insulated from one another. The element is comprised of a material having a coefficient of thermal expansion of less than 10 parts per million per degree Celsius. At least some of the conductors extend along at least one inner surface of the opening. The conductors define a plurality of wettable first contacts at the first surface. The first contacts are at least partially aligned with the opening in a direction of the thickness and electrically insulated from one another.
Abstract:
A microelectronic assembly includes a first surface and a first thin conductive element exposed at the first surface and having a face comprising first and second regions. A first conductive projection having a base connected to and covering the first region of the face extends to an end remote from the base. A first dielectric material layer covers the second region of the first thin element and contacts at least the base of the first conductive projection. The assembly further includes a second substrate having a second face and a second conductive projection extending away from the second face. A first fusible metal mass connects the first projection to the second projection and extends along an edge of the first projection towards the first dielectric material layer.
Abstract:
A method for making a microelectronic unit includes forming a plurality of wire bonds on a first surface in the form of a conductive bonding surface of a structure comprising a patternable metallic element. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the first surface. The wire bonds have edge surfaces extending between the bases and the end surfaces. The method also includes forming a dielectric encapsulation layer over a portion of the first surface of the conductive layer and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by end surfaces or portions of the edge surfaces that are uncovered by the encapsulation layer. The metallic element is patterned to form first conductive elements beneath the wire bonds and insulated from one another by portions of the encapsulation layer.
Abstract:
A method of bonding first and second microelectronic elements includes pressing together a first substrate containing active circuit elements therein with a second substrate, with a flowable dielectric material between confronting surfaces of the respective substrates, each of the first and second substrates having a coefficient of thermal expansion less than 10 parts per million/° C., at least one of the confronting surfaces having a plurality of channels extending from an edge of such surface, such that the dielectric material between planes defined by the confronting surfaces is at least substantially free of voids and has a thickness over one micron, and at least some of the dielectric material flows into at least some of the channels.
Abstract:
A microelectronic package includes first and second encapsulated microelectronic elements, each of which includes a semiconductor die having a front face and contacts thereon. An encapsulant contacts at least an edge surface of each semiconductor die and extends in at least one lateral direction therefrom. Electrically conductive elements extend from the contacts and over the front face to locations overlying the encapsulant. The first and second microelectronic elements are affixed to one another such that one of the front or back surfaces of one of the first and second semiconductor dies is oriented towards one of the front or back surfaces of the other of the first and second semiconductor dies. A plurality of electrically conductive interconnects extend through the encapsulants of the first and second microelectronic elements and are electrically connected with at least one semiconductor die of the first and second microelectronic elements by the conductive elements.