Abstract:
An imaging system and method that captures compressive sensing (CS) measurements of a received light stream, and also obtains samples of background light level (BGLL). The BGLL samples may be used to compensate the CS measurements for variations in the BGLL. The system includes: a light modulator to spatially modulate the received light stream with spatial patterns, and a lens to concentrate the modulated light stream onto a light detector. The samples of BGLL may be obtained in various ways: (a) injecting calibration patterns among the spatial patterns; (b) measuring complementary light reflected by digital micromirrors onto a secondary output path; (c) separating and measuring a portion of light from the optical input path; (d) low-pass filtering the CS measurements; and (e) employing a light power meter with its own separate input path. Also, the CS measurements may be high-pass filtered to attenuate background light variation.
Abstract:
An imaging system and method that captures compressive sensing (CS) measurements of a received light stream, and also obtains samples of background light level (BGLL). The BGLL samples may be used to compensate the CS measurements for variations in the BGLL. The system includes: a light modulator to spatially modulate the received light stream with spatial patterns, and a lens to concentrate the modulated light stream onto a light detector. The samples of BGLL may be obtained in various ways: (a) injecting calibration patterns among the spatial patterns; (b) measuring complementary light reflected by digital micromirrors onto a secondary output path; (c) separating and measuring a portion of light from the optical input path; (d) low-pass filtering the CS measurements; and (e) employing a light power meter with its own separate input path. Also, the CS measurements may be high-pass filtered to attenuate background light variation.
Abstract:
An imaging system and method that captures compressive sensing (CS) measurements of a received light stream, and also obtains samples of background light level (BGLL). The BGLL samples may be used to compensate the CS measurements for variations in the BGLL. The system includes: a light modulator to spatially modulate the received light stream with spatial patterns, and a lens to concentrate the modulated light stream onto a light detector. The samples of BGLL may be obtained in various ways: (a) injecting calibration patterns among the spatial patterns; (b) measuring complementary light reflected by digital micromirrors onto a secondary output path; (c) separating and measuring a portion of light from the optical input path; (d) low-pass filtering the CS measurements; and (e) employing a light power meter with its own separate input path. Also, the CS measurements may be high-pass filtered to attenuate background light variation.
Abstract:
A system and method for searching an incident light field for atypical regions (e.g., hot spots or cool spots or spectrally distinctive regions) within the incident light field using a light modulator and a spectral sensing device. Once the atypical regions are identified, the light modulator may be used to mask the incident light field so that the spectral sensing device can make spatially-concentrated measurements of the wavelength spectrum of the atypical regions (or alternatively, the exterior of the atypical regions). Furthermore, in a compressive imaging mode, a sequence of spatial patterns may be supplied to the light modulator, and a corresponding sequence of wavelength spectra may be collected from the spectral sensing device. The wavelength spectra comprise a compressed representation of the incident light field over space and wavelength. The wavelength spectra may be used to reconstruct a multispectral (or hyperspectral) data cube.
Abstract:
A system and method for searching an incident light field for atypical regions (e.g., hot spots or cool spots or spectrally distinctive regions) within the incident light field using a light modulator and a spectral sensing device. Once the atypical regions are identified, the light modulator may be used to mask the incident light field so that the spectral sensing device can make spatially-concentrated measurements of the wavelength spectrum of the atypical regions (or alternatively, the exterior of the atypical regions). Furthermore, in a compressive imaging mode, a sequence of spatial patterns may be supplied to the light modulator, and a corresponding sequence of wavelength spectra may be collected from the spectral sensing device. The wavelength spectra comprise a compressed representation of the incident light field over space and wavelength. The wavelength spectra may be used to reconstruct a multispectral (or hyperspectral) data cube.