Abstract:
A method of manufacturing a semiconductor device includes forming a profile of net doping in a drift zone of a semiconductor body by multiple irradiations with protons and generating hydrogen-related donors by annealing the semiconductor body. At least 50% of a vertical extension of the drift zone between first and second sides of the semiconductor body is undulated and includes multiple doping peak values between 1×1013 cm−3 and 5×1014 cm−3.
Abstract:
A semiconductor device includes a semiconductor body having opposite first and second sides. The semiconductor device further includes a drift zone in the semiconductor body between the second side and a pn junction. A profile of net doping of the drift zone along at least 50% of a vertical extension of the drift zone between the first and second sides is undulated and includes doping peak values between 1×1013 cm−3 and 5×1014 cm−3. A device blocking voltage Vbr is defined by a breakdown voltage of the pn junction between the drift zone and a semiconductor region of opposite conductivity type that is electrically coupled to the first side of the semiconductor body.
Abstract:
A semiconductor body includes first and second opposing surfaces, an edge extending in a vertical direction substantially perpendicular to the first surface, an active area, a peripheral area arranged in a horizontal direction substantially parallel to the first surface between the active area and edge, and a pn-junction extending from the active area into the peripheral area. In the peripheral area the semiconductor device further includes a first conductive region arranged next to the first surface, a second conductive region arranged next to the first surface, and arranged in the horizontal direction between the first conductive region and edge, and a passivation structure including a first portion at least partly covering the first conductive region, a second portion at least partly covering the second conductive region. The first portion has a different layer composition than the second portion and/or a thickness which differs from the thickness of the second portion.
Abstract:
A semiconductor diode includes a semiconductor body having opposite first and second sides. A first and a second semiconductor region are consecutively arranged along a lateral direction at the second side. The first and second semiconductor regions are of opposite first and second conductivity types and are electrically coupled to an electrode at the second side. The semiconductor diode further includes a third semiconductor region of the second conductivity type buried in the semiconductor body at a distance from the second side. The second and third semiconductor regions are separated from each other.
Abstract:
A semiconductor component and a method for producing a semiconductor component are described. The semiconductor component includes a semiconductor body including an inner zone and an edge zone, and a passivation layer, which is arranged at least on a surface of the semiconductor body adjoining the edge zone. The passivation layer includes a semiconductor oxide and that includes a defect region having crystal defects that serve as getter centers for contaminations.
Abstract:
A power semiconductor diode includes: a semiconductor body with a drift region of a first conductivity type; a first load terminal at a first side of the semiconductor body coupled to an anode region of a second conductivity type in the semiconductor body and coupled to the drift region; a second load terminal at a second side of the semiconductor body coupled to both cathode regions of the first conductivity type and short regions of the second conductivity type of a doped region in the semiconductor body and coupled to the drift region; and a resistive element external of the semiconductor body. The diode conducts a load current between the load terminals, a first path of which crosses the anode region, drift region and cathode regions and a second path of which crosses the anode region, drift region and short regions. The resistive element exhibits a resistance having a positive-temperature-coefficient.
Abstract:
A semiconductor body includes first and second opposing surfaces, an edge extending in a vertical direction substantially perpendicular to the first surface, an active area, a peripheral area arranged in a horizontal direction substantially parallel to the first surface between the active area and edge, and a pn-junction extending from the active area into the peripheral area. In the peripheral area the semiconductor device further includes a first conductive region arranged next to the first surface, a second conductive region arranged next to the first surface, and arranged in the horizontal direction between the first conductive region and edge, and a passivation structure including a first portion at least partly covering the first conductive region, a second portion at least partly covering the second conductive region. The first portion has a different layer composition than the second portion and/or a thickness which differs from the thickness of the second portion.
Abstract:
A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
Abstract:
A semiconductor diode includes a semiconductor body having opposite first and second sides. A first and a second semiconductor region are consecutively arranged along a lateral direction at the second side. The first and second semiconductor regions are of opposite first and second conductivity types and are electrically coupled to an electrode at the second side. The semiconductor diode further includes a third semiconductor region of the second conductivity type buried in the semiconductor body at a distance from the second side. The second and third semiconductor regions are separated from each other.
Abstract:
A semiconductor device includes a semiconductor body having opposite first and second sides. The semiconductor device further includes a drift zone in the semiconductor body between the second side and a pn junction. A profile of net doping of the drift zone along at least 50% of a vertical extension of the drift zone between the first and second sides is undulated and includes doping peak values between 1×1013 cm−3 and 5×1014 cm−3. A device blocking voltage Vbr is defined by a breakdown voltage of the pn junction between the drift zone and a semiconductor region of opposite conductivity type that is electrically coupled to the first side of the semiconductor body.