Abstract:
The present invention relates to a method for fabricating blackened conductive patterns, which includes (i) forming a resist layer on a non-conductive substrate; (ii) forming fine pattern grooves in the resist layer using a laser beam; (iii) forming a mixture layer containing a conductive material and a blackening material in the fine pattern grooves; and (iv) removing the resist layer remained on the non-conductive substrate.
Abstract:
Provided herein is a method for manufacturing a conductive transparent substrate, the method including forming a plurality of main electrodes on the substrate such that the main electrodes are distanced from one another; and forming a connecting electrode that electrically connects two or more main electrodes such that the plurality of main electrodes are grouped into a plurality of group electrodes that are electrically disconnected from one another, thereby producing a conductive transparent substrate with excellent transmittance in a process of high yield.
Abstract:
The present invention relates to a method for fabricating blackened conductive patterns, which includes (i) forming a resist layer on a non-conductive substrate; (ii) forming fine pattern grooves in the resist layer using a laser beam; (iii) forming a mixture layer containing a conductive material and a blackening material in the fine pattern grooves; and (iv) removing the resist layer remained on the non-conductive substrate.
Abstract:
Provided herein is a method for manufacturing a conductive transparent substrate, the method including forming a plurality of main electrodes on the substrate such that the main electrodes are distanced from one another; and forming a connecting electrode that electrically connects two or more main electrodes such that the plurality of main electrodes are grouped into a plurality of group electrodes that are electrically disconnected from one another, thereby producing a conductive transparent substrate with excellent transmittance in a process of high yield.