Abstract:
Provided herein is a conductive pattern making method and conductive pattern, the method including forming a groove such that its width in an inlet area is bigger than its width in an inner area; filling the groove with a conductive ink composition; and drying the conductive ink composition so that a solvent contained in the conductive ink composition inside the groove is volatilized to reduce the volume of the conductive ink composition.
Abstract:
The present invention relates to a method for fabricating blackened conductive patterns, which includes (i) forming a resist layer on a non-conductive substrate; (ii) forming fine pattern grooves in the resist layer using a laser beam; (iii) forming a mixture layer containing a conductive material and a blackening material in the fine pattern grooves; and (iv) removing the resist layer remained on the non-conductive substrate.
Abstract:
Provided herein is a method for manufacturing a conductive transparent substrate, the method including forming a plurality of main electrodes on the substrate such that the main electrodes are distanced from one another; and forming a connecting electrode that electrically connects two or more main electrodes such that the plurality of main electrodes are grouped into a plurality of group electrodes that are electrically disconnected from one another, thereby producing a conductive transparent substrate with excellent transmittance in a process of high yield.
Abstract:
The invention relates to methods for fabricating an optoelectronic device, including: directly applying a printing ink composition to a patterning process, wherein the printing ink composition includes (1) at least one compound selected from the group of compounds represented by Chemical Formula 1, Chemical Formula 2, Chemical Formula 3, and mixtures thereof as disclosed herein in an amount of 0.01-90 wt % based on the total weight of the composition and (2) at least one material for an optoelectronic device.
Abstract:
Provided herein is a method for forming a transparent electrode film for display and the transparent electrode film for display, the method comprising forming an electrode pattern by printing a fine electrode pattern on a release film using a conductive ink composition; forming an insulating layer by applying an insulating resin on the release film on which the electrode pattern has been formed; forming a substrate layer by laminating a substrate on the insulating layer; and removing the release film.
Abstract:
The present invention relates to a method for fabricating blackened conductive patterns, which includes (i) forming a resist layer on a non-conductive substrate; (ii) forming fine pattern grooves in the resist layer using a laser beam; (iii) forming a mixture layer containing a conductive material and a blackening material in the fine pattern grooves; and (iv) removing the resist layer remained on the non-conductive substrate.
Abstract:
Provided herein is a conductive pattern making method and conductive pattern, the method including forming a groove such that its width in an inlet area is bigger than its width in an inner area; filling the groove with a conductive ink composition; and drying the conductive ink composition so that a solvent contained in the conductive ink composition inside the groove is volatilized to reduce the volume of the conductive ink composition.
Abstract:
Provided herein is a method for forming a transparent electrode film for display and the transparent electrode film for display, the method comprising forming an electrode pattern by printing a fine electrode pattern on a release film using a conductive ink composition; forming an insulating layer by applying an insulating resin on the release film on which the electrode pattern has been formed; forming a substrate layer by laminating a substrate on the insulating layer; and removing the release film.
Abstract:
Provided herein is a method for manufacturing a conductive transparent substrate, the method including forming a plurality of main electrodes on the substrate such that the main electrodes are distanced from one another; and forming a connecting electrode that electrically connects two or more main electrodes such that the plurality of main electrodes are grouped into a plurality of group electrodes that are electrically disconnected from one another, thereby producing a conductive transparent substrate with excellent transmittance in a process of high yield.
Abstract:
Provided herein is a method for forming a transparent electrode film, the method comprising forming an electrode pattern by printing an electrode pattern on a release film using a metal ink composition; forming an insulating layer by applying a curable resin on the release film on which the electrode pattern has been formed; forming a substrate layer by laminating a substrate on the insulating layer; removing the release film; and forming a conductive layer by applying a conductive material on the electrode pattern from which the release film has been removed.