Abstract:
Techniques for establishing and implementing application-based routing policies for multi-mode wireless communication devices are described. In some examples, information particular to the profile and platform configuration of the UE, including an identifier of an operating system, is communicated to an Access Network Discovery Function (ANDSF) server. The ANDSF server may provide an inter-system routing policy (ISRP) to handle appropriate network offloading actions for the particular application and device configuration. In some examples, the ISRP may be specific to flow-based or non-seamless based traffic offloading from certain software applications and include nodes to define routing rules based on an operating system identifier and operating system-specific application identifier. The policy may be propagated from the ANDSF server and implemented in multi-mode UE mobile computing devices in connection with offloading policies established in a 3GPP LTE/LTE-A Evolved Packet Core network architecture.
Abstract:
Systems, devices, and configurations to implement trusted connections within wireless networks and associated devices and systems are generally disclosed herein. In some examples, a wireless local area network (WLAN) may be attached to a 3GPP evolved packet core (EPC) as a trusted access network, without use of an evolved packet data gateway (ePDG) and overhead from related tunneling and encryption. Information to create the trusted attachment between a mobile device and a WLAN may be exchanged using Access Network Query Protocol (ANQP) extensions defined by IEEE standard 802.11u-2011, or using other protocols or standards such as DHCP or EAP. A trusted WLAN container with defined data structure fields may be transferred in the ANQP elements to exchange information used in the establishment and operation of the trusted attachment.
Abstract:
An integrated WLAN/WWAN Radio Access Technology (RAT) architecture is described in which signaling used to control the integration of the WLAN/WWAN architecture is performed over the Radio Resource Control (RRC) plane. The integrated architecture may provide a network-controlled framework for performing traffic steering and radio resource management.
Abstract:
An integrated WLAN/WWAN Radio Access Technology (RAT) architecture is described in which signaling used to control the integration of the WLAN/WWAN architecture is performed over the Radio Resource Control (RRC) plane. The integrated architecture may allow for User Equipment (UE) assistance in cell selection and traffic steering. In particular, UE-assisted RRC signaling is described for managing inter-RAT session transfers and secondary cell (SCell) selection.
Abstract:
Systems and methods of enabling access for non-emergency voice calls are described. A UE operates in a network supporting voice services via a multitude of RATs. The UE attempts to access the network via a first RAT offering voice services and data services. If the UE does not receive a response from the network within a first time period, the UE re-attempts the access to the network via the first RAT. If the number of access attempts for which the UE does not receive a response is at least a threshold value, the UE refrains during a second time period from further access attempts via the first RAT for the purpose of receiving data services, and continues to attempt access via the first or second RAT for the purpose of receiving voice services.
Abstract:
Systems and methods of enabling access for non-emergency voice calls are described. A UE operates in a network supporting voice services via a multitude of RATs. The UE attempts to access the network via a first RAT offering voice services and data services. If the UE does not receive a response from the network within a first time period, the UE re-attempts the access to the network via the first RAT. If the number of access attempts for which the UE does not receive a response is at least a threshold value, the UE refrains during a second time period from further access attempts via the first RAT for the purpose of receiving data services, and continues to attempt access via the first or second RAT for the purpose of receiving voice services.
Abstract:
Systems and methods of signaling RDS and PS Data Off in a UE and to a network are described. A UE includes TE and a MT. The TE determines whether RDS and PSDO are to be used for a PDN connection, and generates an AT command for communication to the MT to indicate an RDS status and a PSDO status of the PDN connection. The MT indicates to the network, based on the AT command, the RDS status and PSDO status of the PDN connection at the ME. The AT command enables the TE and allows the ME to communicate support for, and the status of RDS and PSDO, to the MT and enables usage, testing and status reporting of the features.
Abstract:
Techniques for establishing and implementing application-based routing policies for multi-mode wireless communication devices such as a user equipment (UE) are generally described herein. In some examples, information particular to the profile and platform configuration of the UE is communicated to an Access Network Discovery Function (ANDSF) server. The ANDSF server may provide an inter-system routing policy (ISRP) to handle appropriate network offloading actions for the particular application and device configuration. In some examples, the ISRP may be specific to flow-based or non-seamless based traffic offloading from certain software applications. The techniques described herein may be propagated from the ANDSF server and implemented in a variety of multi-mode UE mobile computing devices in connection with offloading policies established in a 3GPP Long Term Evolution/Long Term Evolution-Advanced (LTE/LTE-A) Evolved Packet Core (EPC) network architecture.
Abstract:
Embodiments of a mobile device and method for secure online sign-up and provisioning of credentials for Wi-Fi hotspots are generally described herein. In some embodiments, provisioning occurs using a service set identifier (SSID) to associate with a hotspot and retrieve a virtual LAN (VLAN) identifier. The VLAN identifier is used to complete the signup and provisioning process. In some embodiments, a hotspot may implement a primary SSID and a dependent SSID. The mobile device associates with the hotspot using the dependent SSID to perform the secure online signup and provisioning process. Once credentials are obtained using the signup and provisioning process, the device can connect to the hotspot using the primary SSID and the already provisioned credentials. The provisioned credentials may include certificates, username/password, or SIM-type credentials.
Abstract:
Systems and methods of enabling access for non-emergency voice calls are described. A UE operates in a network supporting voice services via a multitude of RATs. The UE attempts to access the network via a first RAT offering voice services and data services. If the UE does not receive a response from the network within a first time period, the UE re-attempts the access to the network via the first RAT. If the number of access attempts for which the UE does not receive a response is at least a threshold value, the UE refrains during a second time period from further access attempts via the first RAT for the purpose of receiving data services, and continues to attempt access via the first or second RAT for the purpose of receiving voice services.