Abstract:
A system and method are presented for the encoding of participants in a conference setting. In an embodiment, audio from conference participants in a voice-over-IP setting may be received and processed by the system. In an embodiment, audio may be received in a compressed form and de-compressed for processing. For each participant, return audio is generated, compressed (if applicable) and transmitted to the participant. The system may recognize when participants are using the same audio encoding format and are thus receiving audio that may be similar or identical. The audio may only be encoded once instead of for each participant. Thus, redundant encodings are recognized and eliminated resulting in less CPU usage.
Abstract:
A system and method are presented for learning call analysis. Audio fingerprinting may be employed to identify audio recordings that answer communications. In one embodiment, the system may generate a fingerprint of a candidate audio stream and compare it against known fingerprints within a database. The system may also search for a speech-like signal to determine if the endpoint contains a known audio recording. If a known audio recording is not encountered, a fingerprint may be computed for the contact and the communication routed to a human for handling. An indication may be made as to if the call is indeed an audio recording. The associated information may be saved and used for future identification purposes.
Abstract:
Systems and methods for the matching of datasets, such as input audio segments, with known datasets in a database are disclosed. In an illustrative embodiment, the use of the presently disclosed systems and methods is described in conjunction with recognizing known network message recordings encountered during an outbound telephone call. The methodologies include creation of a ternary fingerprint bitmap to make the comparison process more efficient. Also disclosed are automated methodologies for creating the database of known datasets from a larger collection of datasets.
Abstract:
A system and method for learning alternate pronunciations for speech recognition is disclosed. Alternative name pronunciations may be covered, through pronunciation learning, that have not been previously covered in a general pronunciation dictionary. In an embodiment, the detection of phone-level and syllable-level mispronunciations in words and sentences may be based on acoustic models trained by Hidden Markov Models. Mispronunciations may be detected by comparing the likelihood of the potential state of the targeting pronunciation unit with a pre-determined threshold through a series of tests. It is also within the scope of an embodiment to detect accents.
Abstract:
A system and method are presented for the correction of packet loss in audio in automatic speech recognition (ASR) systems. Packet loss correction, as presented herein, occurs at the recognition stage without modifying any of the acoustic models generated during training. The behavior of the ASR engine in the absence of packet loss is thus not altered. To accomplish this, the actual input signal may be rectified, the recognition scores may be normalized to account for signal errors, and a best-estimate method using information from previous frames and acoustic models may be used to replace the noisy signal.
Abstract:
Systems and methods for the matching of datasets, such as input audio segments, with known datasets in a database are disclosed. In an illustrative embodiment, the use of the presently disclosed systems and methods is described in conjunction with recognizing known network message recordings encountered during an outbound telephone call. The methodologies include creation of a ternary fingerprint bitmap to make the comparison process more efficient. Also disclosed are automated methodologies for creating the database of known datasets from a larger collection of datasets.
Abstract:
A system and method are presented for optimization of audio fingerprint search. In an embodiment, the audio fingerprints are organized into a recursive tree with different branches containing fingerprint sets that are dissimilar to each other. The tree is constructed using a clustering algorithm based on a similarity measure. The similarity measure may comprise a Hamming distance for a binary fingerprint or a Euclidean distance for continuous valued fingerprints. In another embodiment, each fingerprint is stored at a plurality of resolutions and clustering is performed hierarchically. The recognition of an incoming fingerprint begins from the root of the tree and proceeds down its branches until a match or mismatch is declared. In yet another embodiment, a fingerprint definition is generalized to include more detailed audio information than in the previous definition.
Abstract:
A system and method are presented for the correction of packet loss in audio in automatic speech recognition (ASR) systems. Packet loss correction, as presented herein, occurs at the recognition stage without modifying any of the acoustic models generated during training. The behavior of the ASR engine in the absence of packet loss is thus not altered. To accomplish this, the actual input signal may be rectified, the recognition scores may be normalized to account for signal errors, and a best-estimate method using information from previous frames and acoustic models may be used to replace the noisy signal.
Abstract:
A system and method are presented for the synthesis of speech from provided text. Particularly, the generation of parameters within the system is performed as a continuous approximation in order to mimic the natural flow of speech as opposed to a step-wise approximation of the feature stream. Provided text may be partitioned and parameters generated using a speech model. The generated parameters from the speech model may then be used in a post-processing step to obtain a new set of parameters for application in speech synthesis.
Abstract:
A system and method are presented for acoustic data selection of a particular quality for training the parameters of an acoustic model, such as a Hidden Markov Model and Gaussian Mixture Model, for example, in automatic speech recognition systems in the speech analytics field. A raw acoustic model may be trained using a given speech corpus and maximum likelihood criteria. A series of operations are performed, such as a forced Viterbi-alignment, calculations of likelihood scores, and phoneme recognition, for example, to form a subset corpus of training data. During the process, audio files of a quality that does not meet a criterion, such as poor quality audio files, may be automatically rejected from the corpus. The subset may then be used to train a new acoustic model.