Abstract:
A display panel manufacturing method is provided. A display function unit is provided on a surface of a first substrate. Sealing material is provided in a region on the surface of the first substrate that is surrounding the display function unit. Resin is then placed in an inside region of the sealing material over the surface of the first substrate. A total volume amount of the resin placed is greater than a volume capacity of an open space surrounded by the sealing material above the surface of the first substrate. A second substrate is bonded with the first substrate via the sealing material to provide a closed space with the resin being provided in the closed space.
Abstract:
A display device includes: a power supplying unit which outputs at least one of a high-side output potential and a low-side output potential; a display unit in which pixels are arranged in a matrix and which receives power supply from the power supplying unit; a monitor wire arranged along a column direction of the pixels in the matrix, which has one end connected to at least one pixel inside the display unit, and is for transmitting the high-side potential to be applied to the pixel; and a voltage regulating unit connected to the other end of the monitor wire, which regulates at least one of the high-side output potential and the low-side output potential to be outputted by the power supplying unit, to set a potential difference between the high-side potential and the low-side potential to a predetermined potential difference.
Abstract:
An organic electroluminescence (EL) display panel including pixels arranged in a matrix, the organic EL display panel includes: a substrate; pixel electrode layers made of a light-reflective material and arranged on the substrate in a matrix; an insulating layer provided at least above row and column outer edges of the pixel electrode layers and above inter-regions on the substrate between the row and column outer edges; an organic functional layer provided above the pixel electrode layers; and a counter electrode layer made of a light-transmissive material and is provided above the organic functional layer, wherein the organic functional layer includes light-emitting layers that are provided in regions above the pixel electrode layers where the insulating layer is not provided, the light-emitting layers causing organic electroluminescence, and the insulating layer has an optical density of 0.5 to 1.5 in a direction of the substrate when viewed in plan.
Abstract:
A organic EL display panel includes an inter-layer insulation film, a pixel electrode, auxiliary wiring, a partition layer, an organic light-emitting layer, and a common electrode. The inter-layer insulation film has at least one paired concave portion and non-concave portion disposed in a region over the auxiliary wiring, a top face of the concave portion being concave with respect to a top face of the non-concave portion, and the auxiliary wiring includes a part over the concave portion and a part over the non-concave portion, a top face of the part over the concave portion being concave with respect to a top face of the part over the non-concave portion.
Abstract:
A display device including: a lead wiring layer pattern 207, made from metal, that extends outside a light emission region on a substrate; a passivation layer 216 covering the lead wiring layer pattern, a contact hole 216a in the passivation layer outside the light emission region; a connecting wiring layer pattern 237 that is continuous across the passivation layer, an inner circumference of the contact hole, and the lead wiring layer pattern in the contact hole; an electrically-conductive sealing layer pattern 217 on the connecting wiring layer pattern, covering a portion of the connecting wiring layer pattern in the contact hole; an electrically-conductive upper sealing layer pattern 219 covering and in contact with a portion of the sealing layer pattern; and a contact prevention layer pattern 218, 236 between the electrically-conductive upper sealing layer pattern and a periphery of the sealing layer pattern.
Abstract:
A display device including: a lead wiring layer pattern 207, made from metal, that extends outside a region 10A on a substrate in which a light-emitter is present; a passivation layer 216; a contact hole 216a in the passivation layer 216 outside the region 10A in a position over the lead wiring layer pattern 207 in plan view; a connecting wiring layer pattern 237 that is continuous across the passivation layer 216, an inner circumference of the contact hole 216a, and the lead wiring layer pattern 207 in the contact hole 216a; a sealing layer 217 covering a portion of the connecting wiring layer pattern 237 in the contact hole 216a; and an upper sealing layer pattern 219 covering the sealing layer pattern 217 that is above the connecting wiring layer pattern 237.
Abstract:
A method of fabricating a display panel apparatus, includes forming a TFT layer, forming a planarizing film, forming a lower electrode, an electrode plate, and an auxiliary electrode, forming banks, forming the organic EL layer, and forming an upper electrode. The electrode plate has an opening exposing a portion of a surface of the planarizing film. In at least one of the forming of the lower electrode, the electrode plate and the auxiliary electrode, and the forming of the banks, the opening of the electrode plate outgasses the planarizing film. The electrode plate has a power supply that receives current through the electrode plate. The opening extends in parallel with a side of the display near the opening. Current flowing between the power supply and a portion connecting the auxiliary electrode and the electrode plate flows along an extending direction of the opening.