Abstract:
An organic electroluminescence (EL) display panel includes pixels arranged in a matrix of rows and columns, and includes: a substrate; pixel electrode layers that are arranged on the substrate in the matrix; an insulating layer that is provided above the substrate and the pixel electrode layers, and has elongated openings and a grooved portion for each of the pixels, the openings extending in a column direction and being arranged in a row direction, the grooved portion having an upper opening and a bottom and being communicated with at least one of the openings in plan view; organic functional layers that are provided above the pixel electrode layers, and include light emitting layers in which organic electroluminescence occurs in the openings; and a light-transmissive counter electrode layer that is provided above the organic functional layers. Cross-sectional profiles of the openings taken along the row direction are uniform in the column direction.
Abstract:
An organic electroluminescence (EL) display panel having pixels arranged in a matrix of rows and columns includes: a substrate; pixel electrode layers that are made of a light-reflective material and are arranged on the substrate in the matrix; an insulating layer that is provided above the substrate and the pixel electrode layers; organic functional layers that are provided above the pixel electrode layers; and a light-transmissive counter electrode layer that is provided above the organic functional layers, wherein the insulating layer has a first opening and second openings for each of the pixel electrode layers, the first opening being elongated in a column direction, the second openings each being shorter than the first opening in the column direction and being lined up adjacent to the first opening, and the organic functional layers include light-emitting layers in which organic electroluminescence occurs in the first opening and the second openings.
Abstract:
According to one embodiment, a display device includes, a first insulating film including a recess portion having a first bottom surface and an inclined first side surface, a first electrode provided on the recess portion, a second insulating film provided on the first electrode, a light-emitting layer provided in the second insulating film and including a second bottom surface in contact with the first electrode and an inclined second side surface, and a second electrode provided on the light-emitting layer. The depth of the recess portion is greater than the thickness of the light-emitting layer, and the thickness of the second insulating film is greater than the depth of the recess portion.
Abstract:
A display unit is provided with a plurality of pixels. The plurality of pixels each include a first electrode, an insulating film, an organic layer, and a second electrode. The insulating film is provided on the first electrode, and has openings. The organic layer is provided in each of the openings of the insulating film, and includes a light-emitting layer. The second electrode is provided on the organic layer. The first electrode includes a plurality of sub-electrodes that are provided to face the respective openings of the insulating film.
Abstract:
A display unit includes a plurality of pixels and a first insulating film. The plurality of pixels are arranged in matrix in a first direction and a second direction. The first insulating film is provided between adjacent pixels of the pixels, and has first openings in light-emitting regions of the respective pixels. The first insulating film has, between pixels adjacent in the second direction of the pixels, a second opening extending in the first direction, and a remaining part inside the second opening.
Abstract:
A display device includes a pixel including a plurality of sub-pixels. Each of the plurality of sub-pixels includes: a light-emission region; and a non-light-emission region other than the light-emission region. The light-emission region includes one or more effective light-emitting parts in which a first electrode, a light emitting layer, and a second electrode are stacked in order, and a light guide provided on side of the one or more effective light-emitting parts on which light is extracted.
Abstract:
A display apparatus includes (A) a first substrate where a plurality of light emitting elements, which are formed by laminating a first electrode, a light emitting section which is configured by an organic layer provided with a light emitting layer, and a second electrode, are formed, and (B) a second substrate which is arranged to oppose the first substrate, in which the first substrate is further provided with a light reflecting layer formed of first members which propagate and output light from each light emitting element to an outside and second members placed between two first members, the first members have a truncated cone shape where a cutting head section opposes the light emitting element, a part of light propagated by the first members is completely reflected on opposing surfaces of the second members which oppose the first members.