Abstract:
The present disclosure relates to an electrode assembly for use with an electrosurgical instrument. The electrode assembly includes a pair of opposing jaw members and an electrode positioned on each jaw member. One or both of the electrodes includes a tissue contacting surface that has an outer periphery and defines a side surface depending therefrom. The tissue contacting surface and the side surface include a conjoining edge formed at a first predetermined angle that defines a first linear transition zone dimensioned to reduce arcing between the opposing jaw members during activation of the electrosurgical instrument.
Abstract:
An electrosurgical generator is disclosed. The generator includes a power supply operable to generate a DC voltage and a multi-pole, phase-shifted, pulse-width and/or frequency modulated RF output stage coupled to the power supply. The RF output stage includes a plurality of dual-pole circuits, each of the plurality of dual-pole circuits including first and second pairs of switching components. The generator also includes a controller configured to drive the first and second pairs of switching components of each of the plurality of dual-pole circuits at a predetermined phase-shifted frequency.
Abstract:
A detection circuit for return electrode monitoring is disclosed. The detection circuit includes a transformer operatively coupled to a pair of split electrode pads, wherein the transformer is configured to transceive a return electrode sense signal. The detection circuit also includes a first switch coupled to the transformer and a neutrally-referenced second switch, wherein the first switch and the second switch are disposed on a single die. The detection circuit further includes an operational amplifier coupled to the first switch and the neutrally-referenced second switch. The operational amplifier is configured to subtract a noise signal from the return electrode sense signal.
Abstract:
An ultrasonic system is provided that includes an ultrasonic device having an elongated member configured to impart ultrasonic energy to tissue and a resonator configured to impart a frequency to the elongated member. The system also includes an ultrasonic generator configured to supply power to the resonator of the ultrasonic device. The ultrasonic generator has a drive signal generator configured to provide a drive signal, a noise signal generator configure to provide a noise signal, and a controller. The controller receives an output signal from the ultrasonic device and the noise signal from the noise signal generator, calculates a transfer function based on the output signal and the noise signal, and adjusts the drive signal generator based on the calculated transfer function.
Abstract:
The present invention provides a method and apparatus for updating serial devices. The apparatus includes a plurality of serial registers. The apparatus further includes a device adapted to provide a signal and a plurality of parallel registers, wherein each of the parallel registers is adapted to access at least one of the plurality of serial registers at substantially the same time in response to detecting the signal.
Abstract:
The present invention provides a method and apparatus for configuring a timing feedback path in a semiconductor device. The apparatus includes an oscillator adapted to provide a reference clock signal. The apparatus further includes at least one buffer layer adapted to receive the reference clock signal and provide a delayed clock signal, a selector adapted to select one of the delayed clock signal and the reference clock signal, and a device adapted to provide an output clock signal such that the selected one of the delayed clock signal and the reference clock signal is substantially in phase with the reference clock signal.
Abstract:
An electrosurgical system is provided. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. A power source operably couples to the electrosurgical generator and is configured to deliver power to one or more types of loads connected to the electrosurgical generator. The electrosurgical generator includes a controller including a microprocessor coupled to the electrosurgical generator and configured to control the output of the electrosurgical generator. A fiber optic connection circuit is in operative communication with the controller and includes one or more types of logic devices and one or more types of fiber optic channels. The fiber optic connection circuit is configured to mitigate leakage current associated with at least one of a plurality of components operatively associated with the electrosurgical generator by providing isolation.
Abstract:
An oscillating circuit for determining a resonant frequency of an electro-mechanical oscillating device and for driving the electro-mechanical oscillating device at the determined resonant frequency includes a driving circuit and a start-up, impetus injection circuit. The driving circuit is configured to receive one or more reference signals and further configured to provide a driving signal related to the reference signals to the electro-mechanical oscillating device. The start-up, impetus injection circuit is operably coupled to the electro-mechanical oscillating device and configured to selectively provide a start-up excitation signal to the electro-mechanical oscillation device. The start-up, impetus injection circuit is activated upon start-up of the oscillating circuit to drive the electro-mechanical oscillation device and the driving circuit determines a resonant frequency by measuring a parameter related to the resonant frequency of the electro-mechanical oscillating device.
Abstract:
The disclosed electrosurgical systems and methods accurately determine the power actually applied to a load by using equalizers to calibrate the power measurements. The electrosurgical systems include an electro surgical generator and an electrosurgical instrument coupled to the electrosurgical generator through an electrosurgical cable. The electro surgical generator includes an electrical energy source, voltage and current detectors, equalizers that estimate the voltage and current applied to a load, and a power calculation unit that calculates estimated power based upon the estimated voltage and current. The methods of calibrating an electro surgical generator involve applying a resistive element across output terminals of the electrosurgical generator, applying a test signal to the resistive element, measuring the magnitude and phase angle of voltage and current components of the test signal within the electrosurgical generator, estimating the magnitude and phase angle of the voltage and current at the resistive element using equalizers, and determining gain correction factors and minimum phase angles for the equalizers.
Abstract:
The present disclosure relates to an electrode assembly for use with an electrosurgical instrument. The electrode assembly includes a pair of opposing jaw members and an electrode positioned on each jaw member. One or both of the electrodes includes a tissue contacting surface that has an outer periphery and defines a side surface depending therefrom. The tissue contacting surface and the side surface include a conjoining edge formed at a first predetermined angle that defines a first linear transition zone dimensioned to reduce arcing between the opposing jaw members during activation of the electrosurgical instrument.