Abstract:
The present invention relates to MicroElectroMechanical Systems (MEMS), devices and applications thereof in which a proof mass is caused to levitate by electrostatic repulsion. Configurations of electrodes are described that result in self-stabilized floating of the proof mass. The electrical properties of the electrodes causing floating, such as currents and/or voltages, typically change in response to environmental perturbations affecting the proof mass. Measuring such currents and/or voltages allow immediate and accurate measurements to be performed related to those perturbations affecting the location and/or the orientation of the proof mass. Additional sensing electrodes can be included to further enhance sensing capabilities. Drive electrodes can also be included that allow forces to be applied to the charged proof mass resulting in a floating, electrically controllable MEMS device. Several applications are described including accelerometers, inertial sensors, resonators and filters for communication devices, gyros, one and two axis mirrors and scanners, among other devices. Several fabrication methods are also described.
Abstract:
This invention is a novel methodology for precision metrology, sensing, and actuation at the micro- and nano-scale. It is well-suited for micro- and nano-scale because it leverages off the electromechanical benefits of the scale. The invention makes use of electrical measurands of micro- or nano-scale devices to measure and characterize themselves, other devices, and whatever the devices subsequently interact with. By electronically measuring the change in capacitance, change in voltage, and/or resonance frequency of one or more test structures, a multitude of geometric, dynamic, and material properties may be extracted with a much higher accuracy and precision than conventional methods.
Abstract:
A scanning probe microscope includes a plate moveable in an x-axis direction, a y-axis direction, and a z-axis direction, and a probe tip coupled to the plate. A plurality of actuators cooperate to move the probe tip with three degrees of freedom of movement.
Abstract:
The present invention generally relates to a system and method for improving the precision and applicability of microscale and nanoscale electromechanical systems. The system includes a device (such as an electrostatic sensor) for measuring parameters of a force associated with noise-induced background readings of a microscale or nanoscale electromechanical system, and a device (such as an electrostatic actuator) for applying a countering force to the electromechanical system.
Abstract:
A self-calibrating apparatus comprises a primary device and a test structure fabricated on an integrated circuit chip. The primary device and the test structure have at least one unknown property due to a fabrication process of the integrated circuit chip. An electrical measurand sensor is configured to measure an electrical measurand of the test structure. A controller coupled to the primary device and electrical measurand sensor. The controller is configured to calculate the at least one unknown property of the test structure based on the measured electrical measurand and use the calculated at least one unknown property to calibrate the primary device.
Abstract:
A robot and method of manufacturing the same are disclosed. Embodiments of the robot include robots with piezoelectric appendages and microrobots of very small sizes, for example, robots with appendage lengths equal to approximately 300 μm. Further embodiments include a plurality of piezoelectric appendages, each appendage including a plurality of piezoelectric members coupled to one another at two locations, while other embodiments include appendages with piezoelectric members coupled to one another at three locations. Various embodiments are capable of jumping, walking upside down, carrying heavy loads, and/or walking with foreign object contamination in one or more appendages. Still further embodiments include energy storage members that store the energy generated by an appendage when the appendage is subject to external forces.
Abstract:
A self-calibrating apparatus comprises a primary device and a test structure fabricated on an integrated circuit chip. The primary device and the test structure have at least one unknown property due to a fabrication process of the integrated circuit chip. An electrical measurand sensor is configured to measure an electrical measurand of the test structure. A controller coupled to the primary device and electrical measurand sensor. The controller is configured to calculate the at least one unknown property of the test structure based on the measured electrical measurand and use the calculated at least one unknown property to calibrate the primary device.
Abstract:
The present invention relates to MicroElectroMechanical Systems (MEMS), devices and applications thereof in which a proof mass is caused to levitate by electrostatic repulsion. Configurations of electrodes are described that result in self-stabilized floating of the proof mass. The electrical properties of the electrodes causing floating, such as currents and/or voltages, typically change in response to environmental perturbations affecting the proof mass. Measuring such currents and/or voltages allow immediate and accurate measurements to be performed related to those perturbations affecting the location and/or the orientation of the proof mass. Additional sensing electrodes can be included to further enhance sensing capabilities. Drive electrodes can also be included that allow forces to be applied to the charged proof mass resulting in a floating, electrically controllable MEMS device. Several applications are described including accelerometers, inertial sensors, resonators and filters for communication devices, gyros, one and two axis mirrors and scanners, among other devices. Several fabrication methods are also described.
Abstract:
A micro electro mechanical system device has a first subassembly having sensor element including a coupler, and a second subassembly including a comb drive. The comb drive having stator plates and rotor plates and the coupler configured to displace the rotor plates relative to the stator plates providing a variable capacitance dependent on the displacement of the rotor plate.
Abstract:
This invention is a novel methodology for precision metrology, sensing, and actuation at the micro- and nano-scale. It is well-suited for micro- and nano-scale because it leverages off the electromechanical benefits of the scale. The invention makes use of electrical measurands of micro- or nano-scale devices to measure and characterize themselves, other devices, and whatever the devices subsequently interact with. By electronically measuring the change in capacitance, change in voltage, and/or resonance frequency of one or more test structures, a multitude of geometric, dynamic, and material properties may be extracted with a much higher accuracy and precision than conventional methods.