Abstract:
An energy optimization system for a building includes a processing circuit configured to generate a user interface including an indication of one or more economic load demand response (ELDR) operation parameters, one or more first participation hours, and a first load reduction amount for each of the one or more first participation hours. The processing circuit is configured to receive one or more overrides of the one or more first participation hours from the user interface, generate one or more second participation hours, a second load reduction amount for each of the one or more second participation hours, and one or more second equipment loads for the one or more pieces of building equipment based on the received one or more overrides, and operate the one or more pieces of building equipment to affect an environmental condition of the building based on the one or more second equipment loads.
Abstract:
A building management system (BMS) includes a baseline model generator configured to receive an initial set of predictor variables for potential use in an energy usage model for a building, generate a first set of coefficients for the baseline energy usage model based on the initial set of predictor variables, remove one of the predictor variables from the initial set of predictor variables to create a subset of the initial set of predictor variables, generate a second set of coefficients for the baseline energy usage model based on the subset of the initial set of predictor variables, calculate a test statistic for the removed variable using a difference between the first set of coefficients and the second set of coefficients, and automatically select the removed predictor variable for use in the baseline energy usage model in response the test statistic exceeding a critical value.
Abstract:
A controller for a building management system includes a first data interface configured to receive data from the building management system and a processing circuit including a processor and a memory device storing a fault detection rule having an initial threshold value. The processing circuit is configured to detect a first fault in the building management system using the stored fault detection rule having the initial threshold value and to use the data from the building management system to determine whether an adjustment to the stored fault detection rule is needed. In response to a determination that an adjustment to the stored fault detection rule is needed, the processing circuit is configured to calculate a new threshold value for the stored fault detection rule and update the stored fault detection rule by replacing the initial threshold value with the new threshold value.
Abstract:
A building manager includes a communications interface configured to receive information from a smart energy grid. The building manager further includes an integrated control layer configured to receive inputs from and to provide outputs to a plurality of building subsystems. The integrated control layer includes a plurality of control algorithm modules configured to process the inputs and to determine the outputs. The building manager further includes a fault detection and diagnostics layer configured to use statistical analysis on the inputs received from the integrated control layer to detect and diagnose faults. The building manager yet further includes a demand response layer configured to process the information received from the smart energy grid to determine adjustments to the plurality of control algorithms of the integrated control layer.
Abstract:
A building manager includes a communications interface configured to receive information from a smart energy grid. The building manager further includes an integrated control layer configured to receive inputs from and to provide outputs to a plurality of building subsystems. The integrated control layer includes a plurality of control algorithm modules configured to process the inputs and to determine the outputs. The building manager further includes a fault detection and diagnostics layer configured to use statistical analysis on the inputs received from the integrated control layer to detect and diagnose faults. The building manager yet further includes a demand response layer configured to process the information received from the smart energy grid to determine adjustments to the plurality of control algorithms of the integrated control layer.
Abstract:
A system for monitoring and controlling a central plant includes a high level optimizer, a subplant monitor, a user interface, and a dispatch graphical user interface (GUI) generator. The central plant includes a plurality of subplants configured to serve a thermal energy load. The high level optimizer is configured to determine recommended subplant loads for each of the plurality of subplants. The subplant monitor is configured to monitor the central plant and identify actual subplant loads for each of the plurality of subplants. The user interface is configured to receive manual subplant loads specified by a user. The dispatch GUI generator is configured to generate a dispatch GUI and present the dispatch GUI via the user interface. The dispatch GUI includes the recommended subplant loads, the actual subplant loads, and the manual subplant loads.
Abstract:
An energy optimization system for a building includes a processing circuit configured to generate a user interface including an indication of one or more economic load demand response (ELDR) operation parameters, one or more first participation hours, and a first load reduction amount for each of the one or more first participation hours. The processing circuit is configured to receive one or more overrides of the one or more first participation hours from the user interface, generate one or more second participation hours, a second load reduction amount for each of the one or more second participation hours, and one or more second equipment loads for the one or more pieces of building equipment based on the received one or more overrides, and operate the one or more pieces of building equipment to affect an environmental condition of the building based on the one or more second equipment loads.
Abstract:
A controller for a building management system includes a first data interface configured to receive data from the building management system and a processing circuit including a processor and a memory device storing a fault detection rule having an initial threshold value. The processing circuit is configured to detect a first fault in the building management system using the stored fault detection rule having the initial threshold value and to use the data from the building management system to determine whether an adjustment to the stored fault detection rule is needed. In response to a determination that an adjustment to the stored fault detection rule is needed, the processing circuit is configured to calculate a new threshold value for the stored fault detection rule and update the stored fault detection rule by replacing the initial threshold value with the new threshold value.
Abstract:
A building manager includes a communications interface configured to receive time-of-use information from a smart energy grid and a processing circuit configured to process the time-of-use information received from the smart energy grid to generate load shedding decisions for building subsystems or devices including determining when to utilize energy from energy storage equipment. The processing circuit is configured to determine an amount of greenhouse gas emissions corresponding to the load shedding decisions and convert the amount of greenhouse gas emissions into tradable carbon credits. The processing circuit is configured to generate a graphical user interface including modules indicating the amount of greenhouse gas emissions, the tradable carbon credits, or energy savings resulting from the load shedding decisions. The processing circuit is configured to rearrange, resize, or reconfigure the modules or change the modules for different modules in response to a user input or selection provided via the graphical user interface.
Abstract:
An energy optimization system for a building includes a processing circuit configured to generate a user interface including an indication of one or more economic load demand response (energy) operation parameters, one or more first participation hours, and a first load reduction amount for each of the one or more first participation hours. The processing circuit is configured to receive one or more overrides of the one or more first participation hours from the user interface, generate one or more second participation hours, a second load reduction amount for each of the one or more second participation hours, and one or more second equipment loads for the one or more pieces of building equipment based on the received one or more overrides, and operate the one or more pieces of building equipment to affect an environmental condition of the building based on the one or more second equipment loads.