Abstract:
A multiple-input multiple-output (MIMO) beamforming-based single carrier frequency division multiple access (SC-FDMA) system is disclosed. At the transmitter, a fast Fourier transform (FFT) is performed on transmission data to generate frequency domain data. The frequency domain transmit data is mapped to assigned subcarriers. An inverse fast Fourier transform (IFFT) is performed on the transmit data mapped to the assigned subcarriers to generate time domain transmit data. The time domain transmit data is transmitted via antennas. At a receiver, an FFT is performed on the received data to generate frequency domain received data. Subcarrier demapping is performed to extract data mapped on the assigned subcarriers. A channel estimator generates a channel matrix which is decomposed into U, D and VH matrices. A channel distortion and interference between transmit and receive antennas are equalized based on the decomposed channel matrices to the extracted frequency domain received data.
Abstract:
A plurality of data signals are received over an antenna array having a plurality of antenna elements. The data signals are transmitted over a shared spectrum in a wireless communication system. A signal having each of the data signals is received over each antenna element. The plurality of data signals are grouped into a plurality of groups. The received signals of the antenna elements are matched filtered for a first group of the plurality of groups, producing a matched filtered result. Data is jointly detected of the first group using the matched filtered result. An interference correction signal is constructed using the detected data for each antenna element. The interference cancelled result is subtracted from the received signal of each antenna element, producing an interference cancelled result for each antenna element. Data is successively detected for remaining groups using the interference cancelled result for each antenna element.
Abstract:
A method and apparatus for controlling enhanced dedicated channel (E-DCH) transmissions are disclosed. An enhanced uplink medium access control (MAC-e/es) entity processes a received scheduling grant to calculate a serving grant. The MAC-e/es entity determines whether both a hybrid automatic repeat request (H-ARQ) process for scheduled data and scheduled data are available. If an H-ARQ process for scheduled data and scheduled data are available, the MAC-e/es entity determines whether a serving grant exists. The MAC-e/es entity calculates a remaining power based on maximum allowed power and restricts an E-DCH transport format combination (E-TFC) based on the remaining power. The MAC-e/es entity selects an E-TFC using the serving grant and generates a MAC-e protocol data unit. The MAC-e/es entity may process the received scheduled grant is at each transmission time interval or may store the received scheduled grant in a grant list until there is E-DCH data to transmit.
Abstract:
A method for the simultaneous reception of data from multiple sources having different spreading factors. A plurality of transmission response matrices are generated and grouped together for equal spreading factors. A plurality of spreading factor group matrices are assembled. A base matrix is formed based upon the spreading factor group matrix having a lowest spreading factor. An additional spreading factor group matrix is selected for consideration. Column placement reference index for the base matrix is derived. A reference location for the base matrix is derived. A column set from the selected spreading factor group matrix is derived. The column set is inserted into the base matrix. A total transmission response matrix is assembled.
Abstract:
A method and apparatus for reducing the processing rate when performing chip-level equalization (CLE) in a code division multiple access (CDMA) receiver which includes an equalizer filter. Signals received by at least one antenna of the receiver are sampled at M times the chip rate. Each sample stream is split into M sample data streams at the chip rate. Multipath combining is preferably performed on each split sample data stream. The sample data streams are then combined into one combined sample data stream at the chip rate. The equalizer filter performs equalization on the combined sample stream at the chip rate. Filter coefficients are adjusted by adding a correction term to the filter coefficients utilized by the equalizer filter for a previous iteration.
Abstract:
A transmitter site transmits a plurality of different data signals at a chip rate over a shared spectrum in a code division multiple access communication system. Each transmitted data signal experiences a similar channel response. A combined signal of the transmitted data signals is received. The combined signal is sampled at a multiple of the chip rate. The channel response for the combined signal is determined. A spread data vector is determined using the combined signal samples and the estimated channel response. The data of the different data signals is determined using the spread data vector.
Abstract:
One out of sixteen preamble signatures is selected. A code is produced based on the selected preamble signature. The produced code is phase rotated to produce a processed preamble signature signal. The processed preamble signature signal is used in processing the CDMA RACH signal and the CDMA RACH signal is used to access a CDMA system.
Abstract:
A hybrid orthogonal frequency division multiple access (OFDMA) wireless transmit/receive unit (WTRU) and method. A WTRU includes a transmitter and a receiver. The receiver processes received data to recover data mapped to the subcarriers using OFDMA. The receiver recovers first input data by separating user data from multi-user spread data and recovers second input data from non-spread data.
Abstract:
A method of recovering data for use in a receiver that simultaneously receives a plurality of code division multiple access data signals, each data signal experiencing a similar channel response. A combined signal over the shared spectrum in a time slot is received and sampled. The combined signal comprises the plurality of data signals. The sampled signal is used to estimate the similar channel response, and a channel response matrix is constructed. A channel correlation matrix is constructed based in part on the estimated channel response matrix. A fast Fourier transform (FFT) decomposition of a circulant matrix approximation of the channel correlation matrix, and the sampled data signals, are used to determine a spread data vector. The spread data vector is despread to recover data from the matrix.
Abstract:
A method and apparatus is disclosed for reducing multi-user processing at the receiver in wireless communication systems. Detected codes are grouped according to channel impulse response and a parent code is identified for each group of detected codes. A matrix A is constructed and joint detection is performed using the identified parent codes. Data symbols of the detected codes are obtained from the data symbols of the identified parent codes.