Abstract:
In a solar cell, a collecting electrode is provided on a transparent electrode of a photoelectric conversion section having the transparent electrode on the outermost surface on one main surface side. The collecting electrode includes a first electroconductive layer and a second electroconductive layer in this order from the photoelectric conversion section side. Preferably, a self-assembled monolayer is formed on a region on the transparent electrode layer, which is not provided with the first electroconductive layer. A method for manufacturing the solar cell includes: forming a first electroconductive layer on a transparent electrode layer; forming a self-assembled monolayer on a region on the transparent electrode layer, which is not provided with the first electroconductive layer; and bringing the first electroconductive layer and a plating solution into contact with each other to form the second electroconductive layer by a plating method, in this order.
Abstract:
Disclosed is a solar cell having a collecting electrode on one main surface of a photoelectric conversion section. The collecting electrode includes a first electroconductive layer and a second electroconductive layer in this order from the photoelectric conversion section side, and further includes an insulating layer between the first electroconductive layer and the second electroconductive layer. The first electroconductive layer includes a low-melting-point material, and a part of the second electroconductive layer is conductively connected with the first electroconductive layer through, for example, an opening in the insulating layer. The second electrode layer is preferably formed by a plating method. In addition, it is preferable that before forming the second electroconductive layer, annealing by heating is carried out to generate the opening section in the insulating layer.
Abstract:
Disclosed is a solar cell having a collecting electrode on one main surface of a photoelectric conversion section. The collecting electrode includes a first electroconductive layer and a second electroconductive layer in this order from the photoelectric conversion section side, and further includes an insulating layer between the first electroconductive layer and the second electroconductive layer. The first electroconductive layer includes a low-melting-point material, and a part of the second electroconductive layer is conductively connected with the first electroconductive layer through, for example, an opening in the insulating layer. The second electrode layer is preferably formed by a plating method. In addition, it is preferable that before forming the second electroconductive layer, annealing by heating is carried out to generate the opening section in the insulating layer.
Abstract:
In a solar cell, a collecting electrode is provided on a transparent electrode of a photoelectric conversion section having the transparent electrode on the outermost surface on one main surface side. The collecting electrode includes a first electroconductive layer and a second electroconductive layer in this order from the photoelectric conversion section side. Preferably, a self-assembled monolayer is formed on a region on the transparent electrode layer, which is not provided with the first electroconductive layer. A method for manufacturing the solar cell includes: forming a first electroconductive layer on a transparent electrode layer; forming a self-assembled monolayer on a region on the transparent electrode layer, which is not provided with the first electroconductive layer; and bringing the first electroconductive layer and a plating solution into contact with each other to form the second electroconductive layer by a plating method, in this order.