Method of making a porous nitrogen-doped carbon electrode from biomass

    公开(公告)号:US10600583B1

    公开(公告)日:2020-03-24

    申请号:US16118379

    申请日:2018-08-30

    Abstract: The method of making a porous nitrogen-doped carbon electrode from biomass is a chemical activation-based method of making a porous graphite carbon electrode for supercapacitors and the like. Date palm pollen grains are used as a precursor biomass carbon source for producing the porous graphite carbon. A volume of date palm (Phoenix dactylifera L.) pollen grains is mixed into an aqueous solution of potassium hydroxide to produce a precursor carbon solution. The precursor carbon solution is dried to produce precursor carbon, and the precursor carbon is heated in an inert atmosphere to produce porous nitrogen-doped graphite carbon. The porous nitrogen-doped graphite carbon is washed, dried and mixed with a polyvinylidene difluoride binder, carbon black, and a solvent to form a slurry. The slurry is then coated on nickel foam to form a porous nitrogen-doped carbon electrode. The porous nitrogen-doped carbon electrode is dried, weighted and pressed into a sheet electrode.

    Oxygen reduction reaction electrocatalyst

    公开(公告)号:US10026970B1

    公开(公告)日:2018-07-17

    申请号:US15839693

    申请日:2017-12-12

    Abstract: The oxygen reduction reaction electrocatalyst is a Pt/N/C electrocatalyst that provides an efficient ORR catalyst suitable for use in polymer electrolyte membrane (PEM) fuel cells, for example. The oxygen reduction reaction electrocatalyst is in the form of platinum nanoparticles embedded in a nitrogen-enriched mesoporous carbon matrix, particularly a nitrogen-enriched graphite matrix. The nitrogen-enriched graphite matrix has an average surface area of 240.4 m2/g, and the platinum nanoparticles each have an average diameter between 10 nm and 12 nm.

    Magnetic adsorbent for organic pollutant removal

    公开(公告)号:US10322401B2

    公开(公告)日:2019-06-18

    申请号:US15715022

    申请日:2017-09-25

    Abstract: The magnetic adsorbent for organic pollution removal is an adsorbent material, preferably in the form of microcapsules, for adsorbing organic pollutants, such as methylene blue, onto the microcapsules from contaminated water. Each of the magnetic adsorbent microcapsules is formed from magnetic iron oxide (Fe3O4) particles embedded in a nitrogen-enriched porous carbon matrix. To make the magnetic adsorbent microcapsules, urea and formaldehyde are mixed to form a pre-polymer solution. Magnetic Fe3O4 is mixed with an aqueous epoxy resin in hexane to form a mixture, which is then sonicated and added to the pre-polymer solution to form a polymeric solution. A surfactant, such as sodium lauryl sulfate, is added to the polymeric solution to form a suspension of magnetic microcapsules. The magnetic microcapsules are washed, filtered and dried before annealing in a tube furnace to form the adsorbent microcapsules, which are then washed and dried.

Patent Agency Ranking