Abstract:
Contactless extremely high frequency (EHF) signal directing and blocking structures are disclosed herein. The EHF signal directing structures may focus EHF signal energy along a desired EHF signal pathway. The EHF signal blocking structures may minimize signal propagation through substrates such as circuit boards. Focusing EHF signal energy and selectively blocking the EHF signal energy can minimize or eliminate crosstalk and enhance data transmission speed and integrity.
Abstract:
Contactless extremely high frequency (EHF) signal directing and blocking structures are disclosed herein. The EHF signal directing structures may focus EHF signal energy along a desired EHF signal pathway. The EHF signal blocking structures may minimize signal propagation through substrates such as circuit boards. Focusing EHF signal energy and selectively blocking the EHF signal energy can minimize or eliminate crosstalk and enhance data transmission speed and integrity.
Abstract:
Conduit structures for guiding extremely high frequency (EHF) signals are disclosed herein. The conduit structures can include EHF containment channels that define EHF signal pathways through which EHF signal energy is directed. The conduit structures can minimize or eliminate crosstalk among adjacent paths within a device and across devices.
Abstract:
A waveguide assembly system includes a fixed port, a sliding port, and a transmission path from the fixed port to the sliding port. The transmission path includes a waveguide assembly that includes a first minor face corresponding to the fixed port, a first major face that includes a recess extending from the first minor surface towards the fixed port. The waveguide assembly system also includes a port assembly with a first major surface disposed opposite to the first major surface of the waveguide assembly. The port assembly includes at least one port having a first opening on the first major surface of the port assembly and a second opening on a second major surface of the port assembly. The port assembly includes one or more stubs positioned to impede electromagnetic energy propagation beyond a specified distance within the port tab assembly.
Abstract:
A waveguide assembly system includes a fixed port, a sliding port, and a transmission path from the fixed port to the sliding port. The transmission path includes a waveguide assembly that includes a first minor face corresponding to the fixed port, a first major face that includes a recess extending from the first minor surface towards the fixed port. The waveguide assembly system also includes a port assembly with a first major surface disposed opposite to the first major surface of the waveguide assembly. The port assembly includes at least one port having a first opening on the first major surface of the port assembly and a second opening on a second major surface of the port assembly. The port assembly includes one or more stubs positioned to impede electromagnetic energy propagation beyond a specified distance within the port tab assembly.
Abstract:
A waveguide assembly system includes a fixed port, a sliding port, and a transmission path from the fixed port to the sliding port. The transmission path includes a waveguide assembly that includes a first minor face corresponding to the fixed port, a first major face that includes a recess extending from the first minor surface towards the fixed port. The waveguide assembly system also includes a port assembly with a first major surface disposed opposite to the first major surface of the waveguide assembly. The port assembly includes at least one port having a first opening on the first major surface of the port assembly and a second opening on a second major surface of the port assembly. The port assembly includes one or more stubs positioned to impede electromagnetic energy propagation beyond a specified distance within the port tab assembly.
Abstract:
A waveguide assembly system includes a fixed port, a sliding port, and a transmission path from the fixed port to the sliding port. The transmission path includes a waveguide assembly that includes a first minor face corresponding to the fixed port, a first major face that includes a recess extending from the first minor surface towards the fixed port. The waveguide assembly system also includes a port assembly with a first major surface disposed opposite to the first major surface of the waveguide assembly. The port assembly includes at least one port having a first opening on the first major surface of the port assembly and a second opening on a second major surface of the port assembly. The port assembly includes one or more stubs positioned to impede electromagnetic energy propagation beyond a specified distance within the port tab assembly.
Abstract:
Contactless extremely high frequency (EHF) signal directing and blocking structures are disclosed herein. The EHF signal directing structures may focus EHF signal energy along a desired EHF signal pathway. The EHF signal blocking structures may minimize signal propagation through substrates such as circuit boards. Focusing EHF signal energy and selectively blocking the EHF signal energy can minimize or eliminate crosstalk and enhance data transmission speed and integrity.
Abstract:
A waveguide assembly system includes a fixed port, a sliding port, and a transmission path from the fixed port to the sliding port. The transmission path includes a waveguide assembly that includes a first minor face corresponding to the fixed port, a first major face that includes a recess extending from the first minor surface towards the fixed port. The waveguide assembly system also includes a port assembly with a first major surface disposed opposite to the first major surface of the waveguide assembly. The port assembly includes at least one port having a first opening on the first major surface of the port assembly and a second opening on a second major surface of the port assembly. The port assembly includes one or more stubs positioned to impede electromagnetic energy propagation beyond a specified distance within the port tab assembly.
Abstract:
Conduit structures for guiding extremely high frequency (EHF) signals are disclosed herein. The conduit structures can include EHF containment channels that define EHF signal pathways through which EHF signal energy is directed. The conduit structures can minimize or eliminate crosstalk among adjacent paths within a device and across devices.