Abstract:
An image forming apparatus includes a charging device configured to uniformly charge a surface of a photoconductive element; an image writing device configured to write an image in the charged photoconductive element by light to form an electrostatic latent image; a developing device configured to visualize the formed electrostatic latent image as a toner image; a transfer device configured to transfer the toner image to a sheet recording medium; a fixing device configured to fix the transferred toner image onto the medium; and a surface information detecting device configured to detect surface information of a fixing member of the fixing device. The surface information detecting device radiates optical spots on a surface of the fixing member in a direction crossing a conveying direction, receives reflected light of each optical spot, and detects the surface information of the fixing device based on the detection results of the reflective lights.
Abstract:
A reflective optical sensor for detecting surface information on a moving element moving in a certain direction includes at least one light emitter, a light emitting lens provided between the light emitter and a surface of the moving element and formed to become conjugated with the light emitter in the moving direction of the moving element in a longer distance from the light emitter than in a vertical direction relative to the moving direction, at least one light receiver, and a light receiving lens provided between the light receiver and the surface of the moving element.
Abstract:
A reflection type optical sensor that detect a surface condition of a moving body and that is used for an image generation apparatus which forms images on a recording media includes a light-emitting device which has a plurality of light emitter systems including at least two light-emitting members and a light-emitting optical system having a plurality of light-emitting lenses corresponding to a plurality of the light emitter systems and guiding light emitted from the light emitter systems to the moving body and a light-receiving device which has a light receiver system including at least two light-receiving members and a light-receiving optical system having light-receiving lenses corresponding to the at least two light-receiving members and guiding light reflected by the moving body to the light receiver system. The image generation apparatus has further a surface condition judging device in addition to the reflection type optical sensor.
Abstract:
An image forming apparatus includes a charging device configured to uniformly charge a surface of a photoconductive element; an image writing device configured to write an image in the charged photoconductive element by light to form an electrostatic latent image; a developing device configured to visualize the formed electrostatic latent image as a toner image; a transfer device configured to transfer the toner image to a sheet recording medium; a fixing device configured to fix the transferred toner image onto the medium; and a surface information detecting device configured to detect surface information of a fixing member of the fixing device. The surface information detecting device radiates optical spots on a surface of the fixing member in a direction crossing a conveying direction, receives reflected light of each optical spot, and detects the surface information of the fixing device based on the detection results of the reflective lights.
Abstract:
A fixing device that fixes a toner image carried on a transfer sheet onto the transfer sheet includes a fixing belt that relatively moves, with its surface being in contact with the toner image during the fixing operation, with respect to the transfer sheet, surface information detecting devices that determine surface information of the fixing belt, a surface condition changing roller that is arranged so as to be capable of coming into contact with and separating from the fixing belt and abrades the surface of the fixing belt in contact with the fixing belt, and a surface condition changing controller that controls the contact and separation of the surface condition changing roller with and from the fixing belt based on detection results obtained by the surface information detecting devices.
Abstract:
In a reflective optical sensor in an image forming apparatus, an output from each N number of light-receiving elements (N≧3), obtained when M number of light-emitting elements (M≧3) included in a light-emitting unit emit detecting light, is separated into an amount of specularly reflected light and an amount of diffusely reflected light. The toner density of a pattern, which is formed on a supporting member in the image forming apparatus, is calculated based on a sum of the amounts of specularly reflected light and a sum of the amounts of diffusely reflected light.
Abstract:
A velocity detecting device includes an image-pattern acquiring unit that includes a laser light source and an area sensor that acquires a one-dimensional or a two-dimensional image. The image-pattern acquiring unit includes a lens between a moving member and the area sensor, irradiates a beam emitted from the laser light source to the moving member to make a scattering light of the moving member scattered from the moving member on the area sensor by using the lens, and acquires an image pattern at a predetermined time interval in association with movement of the moving member. A velocity calculating unit calculates the velocity of the moving member by computing the image pattern acquired by the image-pattern acquiring unit. The lens is a reduced optical system that projects a reduced object onto the area sensor.
Abstract:
A reflective optical sensor detects a position and/or a toner density of the toner pattern. The reflective optical sensor includes an illuminating system that has at least three light-emitting units, a light-receiving system that has at least three light-receiving units and receives light output from the illuminating system and reflected by the toner pattern, and an illuminating optical system that includes at least three illuminating condenser lenses individually corresponding to the at least three light-emitting units and that guides the light output from the illuminating system to the toner pattern. The at least three light-emitting units and the at least three light-receiving units are both arranged in equal distance with respect to one direction. Optical axes of the at least three illuminating condenser lenses are off-center in parallel to an axis passing through a center of and perpendicular to the corresponding light-emitting unit.
Abstract:
Disclosed is an adamantanamine derivative which is useful as a significant intermediate of an 11βHSD-1 inhibitor.Disclosed is a compound represented by the formula (II): wherein R10 is a group represented by the formula: —(CR13R14)m-NR12—R11 or the like.
Abstract translation:公开了一种金刚烷胺衍生物,其可用作11重量%HSD-1抑制剂的重要中间体。 公开了由式(II)表示的化合物:其中R 10是由下式表示的基团: - (CR 13 R 14)m -NR 12 R 11等。
Abstract:
Disclosed is a compound which is useful as an endothelial lipase inhibitor.A compound represented by the formula: its pharmaceutically acceptable salt, or a solvate thereof, wherein Ring A is aromatic carbocycle or aromatic heterocycle, Z is —NR5—, —O— or —S—, R5 is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl or the like, R1 is hydrogen, halogen, hydroxy, cyano, nitro, carboxy, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or the like, R2 and R3 are each independently hydrogen, halogen, hydroxy or the like, R4 is a group represented by the formula: —(CR6R7)n-R8, wherein R6 and R7 are each independently hydrogen, halogen, hydroxy or the like, n is an integer of 0 to 3, R8 is carboxy, cyano, substituted or unsubstituted alkyl or the like, Rx is halogen, hydroxy, cyano, nitro, carboxy, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or the like, m is an integer of 0 to 3.