Abstract:
A silicon-based composite that includes silicon-based particles and one or more doping metals selected from the group consisting of Mg, Ca, Al, Na and Ti is provided. In the silicon-based particles, there is a doping metal concentration gradient from the particle center toward the particle surface.
Abstract:
The present invention relates to a method of preparing a negative electrode active material which includes forming a mixture by mixing Li2O and SiOx(0
Abstract:
The present invention relates to a negative electrode and a secondary battery including the same, and particularly, to a negative electrode which includes a negative electrode active material layer including first active material particles each in the form of a secondary particle in which a plurality of primary particles are agglomerated; and second active material particles, wherein the second active material particles have an average particle size (D50) equal to or less than an average particle size (D50) of the primary particles, the first active material particle is artificial graphite, and the second active material particle is a graphite-based particle, and a secondary battery, a battery module, and a battery pack including the same.
Abstract:
A negative electrode active material for a lithium secondary battery, the negative electrode active material including, based on 100 parts by weight of the total negative electrode active material, 5 parts by weight to 20 parts by weight of a first carbon-based particle, 55 parts by weight to 90 parts by weight of a second carbon-based particle, and 1 part by weight to 40 parts by weight of a silicon-based particle, wherein the specific surface area of the first carbon-based particle is 1.5 m2/g to 4.5 m2/g, the specific surface area of the second carbon-based particle is 0.4 m2/g to 1.5 m2/g, and the specific surface area of the first carbon-based particle is greater than the specific surface area of the second carbon-based particle, and capable of solving the problem of lifespan deterioration which may be caused by the use of a silicon-based particle as a negative electrode active material.
Abstract:
A negative electrode active material including a silicon-carbon-based particle, the silicon-carbon-based particle having a SiCx matrix and boron doped in the SiCx matrix, wherein x of the SiCx matrix is 0.3 or more and less than 0.6.
Abstract:
Disclosed are a resin composition and a molded product obtained using the same. By using the resin composition according to the present invention, a molded product having excellent tensile strength, tensile modulus, electromagnetic shielding effects, anti-static effects, and the like may be provided.
Abstract:
According to an exemplary embodiment of the present disclosure, a negative electrode active material includes metal-silicon-carbon based particles including a MaSibC matrix, wherein M in the MaSibC matrix is one or more selected from the group consisting of Li, Mg, Na, Ca, and Al, 0.3≤a≤1, and 1≤b≤2. Since at the time of charging and discharging a battery, formation of an irreversible phase may be minimized by the MaSibC matrix, initial efficiency of the battery may be improved, and electrical conductivity, physical strength, and chemical stability may be improved, such that capacity and lifecycle characteristics of the battery may be improved.
Abstract:
The present invention relates to a negative electrode active material including a carbonaceous matrix having a first particle and a second particle, wherein the first particle includes a silicon core, an oxide layer disposed on the silicon core and including SiOx (0
Abstract:
The present invention relates to a negative electrode active material including a silicon-based composite and a carbon-based material, wherein the silicon-based composite includes SiOx (0≤x≤2) including pores, a polymer disposed in the pores, and a metal compound disposed on a surface of the SiOx (0≤x≤2) or on the surface and inside of the SiOx (0≤x≤2), wherein the metal compound is a compound including at least one element selected from the group consisting of lithium (Li), magnesium (Mg), calcium (Ca), and aluminum (Al), a method of preparing the same, and a negative electrode and a lithium secondary battery which include the negative electrode active material.