Abstract:
A light-emitting diode (LED) device including an LED module and a driver is provided. The LED module includes a voltage sensing module and an LED. The voltage sensing module generates a reference voltage. The driver includes a power converting module, a current processing module, a feedback module and a controller module. The power converting module converts an alternating current (AC) into a driving current for driving the LED to emit a light. The current processing module converts the driving current into a sensing voltage. The feedback module compares the sensing voltage with a reference voltage and outputs a level signal according to a magnitude relationship of the sensing voltage and the reference voltage. The controller module outputs a pulse width modulation (PWM) signal to the power converting module according to the level signal. The power converting module controls the magnitude of the driving current according to the PWM signal.
Abstract:
The present application relates to an illumination device having a light source module, a power supply module, a driving module, a control module and a start module. The driving module outputs a driving current to the light source module based on a power supply from the power supply module. The control module controls the magnitude of the driving current based on a first voltage signal generated by the power source module. After receiving the first voltage signal, the control module controls the driving module to steadily increase the driving current in a first stage output. After receiving the first voltage signal again, the control module controls the driving module to output a constant driving current equal to the driving current at the end of the first stage.
Abstract:
A light-emitting diode (LED) device including an LED module and a driver is provided. The LED module includes a voltage sensing module and an LED. The voltage sensing module generates a reference voltage. The driver includes a power converting module, a current processing module, a feedback module and a controller module. The power converting module converts an alternating current (AC) into a driving current for driving the LED to emit a light. The current processing module converts the driving current into a sensing voltage. The feedback module compares the sensing voltage with a reference voltage and outputs a level signal according to a magnitude relationship of the sensing voltage and the reference voltage. The controller module outputs a pulse width modulation (PWM) signal to the power converting module according to the level signal. The power converting module controls the magnitude of the driving current according to the PWM signal.
Abstract:
An LED drive circuit applied between an LED load and an AC power supply is provided. The circuit includes a rectifier, a power conversion module, a voltage regulator, a photo coupler and a controller. The rectifier rectifies and converts an AC voltage outputted from the AC power supply into a DC voltage. The power conversion module converts the DC voltage into a first drive voltage and a second drive voltage. The first drive voltage drives the LED load. The voltage regulator receives and processes the second drive voltage with a voltage regulating process to generate a third drive voltage not exceeding a maximum voltage rating of the controller. The photo coupler generates a feedback signal according to a signal outputted from the LED load. The controller receives the third drive voltage and generates a control signal to control the power conversion module according to the feedback signal.
Abstract:
An illumination device includes a light-emitting diode (LED) lamp and a LED dimming circuit. The LED dimming circuit includes a power converting module, a sensing unit and a dimming module. The power converting module is used to generate a driving voltage to drive the LED lamp. The sensing unit is used to generate a sensing voltage signal. The dimming module includes an input interface, a dimming signal generator and an isolating unit. The input interface is used to receive a dimming control signal. The dimming signal generator is used to output a first feedback signal based on the sensing voltage signal and the dimming control signal. The isolating unit is used to receive the first feedback signal and output a second feedback signal to the power converting module so as to control a driving current.
Abstract:
An LED drive circuit applied between an LED load and an AC power supply is provided. The circuit includes a rectifier, a power conversion module, a voltage regulator, a photo coupler and a controller. The rectifier rectifies and converts an AC voltage outputted from the AC power supply into a DC voltage. The power conversion module converts the DC voltage into a first drive voltage and a second drive voltage. The first drive voltage drives the LED load. The voltage regulator receives and processes the second drive voltage with a voltage regulating process to generate a third drive voltage not exceeding a maximum voltage rating of the controller. The photo coupler generates a feedback signal according to a signal outputted from the LED load. The controller receives the third drive voltage and generates a control signal to control the power conversion module according to the feedback signal.