Abstract:
A semiconductor chip includes a first wireless communication circuit, a second wireless communication circuit, and an auxiliary path. The first wireless communication circuit includes a signal path, wherein the signal path includes a signal node. The second wireless communication circuit includes a mixer and a local oscillator (LO) buffer. The LO buffer is arranged to receive and buffer an LO signal, and is further arranged to provide the LO signal to the mixer. The auxiliary path is arranged to electrically connect the LO buffer to the signal node of the signal path, wherein the LO buffer is reused for a loop-back test function of the first wireless communication circuit through the auxiliary path.
Abstract:
A semiconductor package includes a leadframe having a die pad and lead terminals along a perimeter of the die pad, and an IC die mounted on the die pad. The IC die includes I/O pads disposed on an active front surface of the IC die. The IC die includes a semiconductor substrate, a circuit block fabricated on the semiconductor substrate, and a through substrate via (TSV) extending through a thickness of the semiconductor substrate. Bond wires extend between the I/O pads and the lead terminals, respectively. A molding compound encapsulates the IC die, the bond wires, and the leadframe.
Abstract:
A transceiver architecture with combined digital beamforming and analog/hybrid beamforming is proposed. Digital beamforming is used for beam training with reduced overhead (switching time). It is beneficial to estimate all UE's angle of arrival (AoA) at the same time. In addition, the pilot/training signals are transmitted in a narrow band to reduce complexity. Analog/hybrid beamforming is used for data transmission with high directive gain and low complexity. The value of beamforming weights (phase shifter values) in analog domain can be based on the estimation of AoA from beam training. By using digital beamforming for beam training, combined with analog/hybrid beamforming for data transmission, effective beamforming is achieved with reduced overhead, complexity, and cost.
Abstract:
The present invention provides for a solution to reduce locking time with satisfactory performance without the need for significant footprint area for the phase lock loop (PLL) circuits by boosting phase frequency detector (PFD) and charge pump (CP) gains through various circuitry configurations that employ one or more flip-flops, delay elements and advanced circuitry techniques.
Abstract:
A phase/frequency detector for controlling a charge pump includes: a core circuit arranged to output a first phase signal and a second phase signal according to a phase/frequency difference between a reference clock signal and an input clock signal; and a timing circuit coupled to the core circuit and arranged to generate a first control signal and a second control signal for controlling the charge pump according to the first phase signal and the second phase signal, wherein only one of the first control signal and the second control signal is indicative of an enabled operation when the reference clock signal and the input clock signal are substantially identical in phase.
Abstract:
A semiconductor chip includes a first wireless communication circuit, a local oscillator (LO) buffer, and an auxiliary path. The first wireless communication circuit has a signal path, wherein the signal path has a mixer input port and a signal node distinct from the mixer input port. The auxiliary path is used to electrically connect the LO buffer to the signal node of the signal path. The LO buffer is reused for a loop-back test function through the auxiliary path.
Abstract:
A semiconductor chip includes a first wireless communication circuit, a local oscillator (LO) buffer, and an auxiliary path. The first wireless communication circuit has a signal path, wherein the signal path has a mixer input port and a signal node distinct from the mixer input port. The auxiliary path is used to electrically connect the LO buffer to the signal node of the signal path. The LO buffer is reused for a loop-back test function through the auxiliary path.
Abstract:
A wireless system includes an active oscillator and a front-end circuit. The active oscillator is used to generate and output a reference clock. The active oscillator includes at least one active component, and does not include an electromechanical resonator. The front-end circuit is used to process a transmit (TX) signal or a receive (RX) signal according to a local oscillator (LO) signal. The LO signal is derived from the reference clock.
Abstract:
A phased-array transceiver includes: a plurality of antennas; a plurality of transceiving elements respectively coupled to the plurality of antennas; a signal processing block; and a first distributed network, coupled between the signal processing block and the transceiving elements, wherein the transceiving elements, the signal processing block, and the first distributed network are configured as a single chip, and a first transceiving path between one of the plurality of transceiving elements and the signal processing block and a second transceiving path between another of the plurality of transceiving elements and the signal processing block share at least partial signal traces of the first distributed network.
Abstract:
A semiconductor chip includes a first wireless communication circuit, a second wireless communication circuit, and an auxiliary path. The first wireless communication circuit includes a signal path, wherein the signal path includes a signal node. The second wireless communication circuit includes a mixer and a local oscillator (LO) buffer. The LO buffer is arranged to receive and buffer an LO signal, and is further arranged to provide the LO signal to the mixer. The auxiliary path is arranged to electrically connect the LO buffer to the signal node of the signal path, wherein the LO buffer is reused for a loop-back test function of the first wireless communication circuit through the auxiliary path.