Abstract:
A method determines isotropic stress by means of a Hall element which includes a plate-shaped area made of a doped semiconductor material and comprises four contacts contacting the plate-shaped area and forming corners of a quadrangle, two neighboring corners of the quadrangle defining an edge thereof. At least one van der Pauw transresistance value in at least one van der Pauw measurement set-up of the Hall element is determined, wherein the four contacts of the Hall element form contact pairs, a contact pair comprising two contacts defining neighboring corners of the quadrangle. One contact pair supplies a current and the other contact pair measures a voltage. A relationship between the supplied current and the measured voltage defines the Van der Pauw transresistance value. The method comprises determining a stress signal which depends on the at least one Van der Pauw transresistance value and determining isotropic stress.
Abstract:
A method determines isotropic stress by means of a Hall element which includes a plate-shaped area made of a doped semiconductor material and comprises four contacts contacting the plate-shaped area and forming corners of a quadrangle, two neighboring corners of the quadrangle defining an edge thereof. At least one van der Pauw transresistance value in at least one van der Pauw measurement set-up of the Hall element is determined, wherein the four contacts of the Hall element form contact pairs, a contact pair comprising two contacts defining neighbouring corners of the quadrangle. One contact pair supplies a current and the other contact pair measures a voltage. A relationship between the supplied current and the measured voltage defines the Van der Pauw transresistance value. The method comprises determining a stress signal which depends on the at least one Van der Pauw transresistance value and determining isotropic stress.
Abstract:
A method for providing offset compensation in a Hall sensor comprising at least one Hall element having a plate-shaped sensor element made of a doped semiconductor material, comprises using measurements on the Hall element itself. The method comprises obtaining a first readout signal (VH) from the at least one Hall element which is substantially dependent on the magnetic field, obtaining a second readout signal (VP) from the at least one Hall element which is substantially independent of the magnetic field, and using the second readout signal (VP) for obtaining a prediction ({circumflex over (V)}O) of the offset (VO) on the first readout signal (VH).
Abstract:
A method for providing offset compensation in a Hall sensor comprising at least one Hall element having a plate-shaped sensor element made of a doped semiconductor material, comprises using measurements on the Hall element itself. The method comprises obtaining a first readout signal (VH) from the at least one Hall element which is substantially dependent on the magnetic field, obtaining a second readout signal (VP) from the at least one Hall element which is substantially independent of the magnetic field, and using the second readout signal (VP) for obtaining a prediction ({circumflex over (V)}O) of the offset (VO) on the first readout signal (VH).