Abstract:
Indicia are imaged at a workstation having windows arranged in intersecting planes. The workstation also has solid-state imagers with fields of view that are split into intersecting subfields that look out through the windows, as well as illumination assemblies each having multiple light sources that illuminate each subfield with illumination light over an illumination field that overlaps a respective subfield. Light-modifying elements, such as lenses or baffles that are radially offset from the multiple light sources, condition the illumination light from the multiple light sources to be generally uniform in light intensity over at least one illuminated subfield.
Abstract:
An apparatus for and method of electro-optically reading targets arbitrarily oriented in a workstation, such as a dual window workstation, employs a solid-state imager for capturing return light from the targets over a field of view. The imager has an array of sensors arranged along mutually perpendicular array axes. An optical system splits the field of view into a plurality of subfields of view that extend through a workstation window to a target. One subfield is optically configured to enable the imager to capture light from the target along one array axis. Another subfield is optically configured to enable the imager to capture light from the target along the other array axis. A controller processes the captured light in both the one and the other subfields to enable the reading of the arbitrarily oriented target in the workstation independently of target orientation relative to the array axes.
Abstract:
A checkout system employs a bi-optical workstation having dual windows and a main reader for electro-optically reading indicia on products to be processed at the workstation through at least one of the windows. The workstation is supported by a countertop and has a raised housing extending upwardly away from the countertop. An auxiliary cordless reader is used for electro-optically reading the indicia in a handheld mode when the main reader is not operated. A cradle bounds a compartment in which the auxiliary cordless reader is removably received when not in the handheld mode. The cradle is supported by the raised housing above and remote from, and out of direct contact with, the countertop to form a zero-footprint therewith.
Abstract:
A multi-window scanner (10) and method (500) of operating multi-window scanner for imaging a target object (44) and auxiliary object (204) includes a housing (16) supporting a first window assembly (22) for scanning a target barcode (42). The scanner also comprises a first scanning system (34) having one of an imaging camera (208/209) and a laser light source (38) positioned within the housing defining a field of view for reading the target barcode upon the target object. The scanner further comprises a second window assembly for reading auxiliary data (206) from an auxiliary object (204) relating to one or more target objects being scanned and a second scanning system (202) positioned within the housing for imaging the auxiliary data from the auxiliary object through the second window assembly (28).
Abstract:
A bar code reader 10 includes a housing 20 including one or more transparent windows H, V and defining a housing interior region. As a target object is swiped or presented in relation to the transparent windows an image of the target object is captured. Cameras C1-C6 have an image capture sensor array with a global shutter is positioned within the housing interior region for capturing an image of a bar code within a camera field of view. All the cameras produce images in a sequential manner during an image frame time period. An image processing system has a processor for decoding a bar code carried by the target object. The processing system responds to signals from a light sensor to terminate object illumination when an adequate image exposure has transpired.
Abstract:
Vertical parallax between an imaging linear field of view (FOV) and an aiming light pattern is reduced in a reader for electro-optically reading symbols to be read by image capture by an arrangement that includes an imaging assembly having a solid-state imager with a linear array of image sensors, and an imaging lens for capturing return light over the imaging linear FOV from a symbol and for projecting the captured return light onto the linear array, an aiming light assembly spaced vertically away from the imaging assembly for generating the aiming light pattern on the symbol prior to reading, and an optical assembly for intercepting the aiming light pattern and for vertically aligning the aiming light pattern with the imaging linear FOV to reduce the vertical parallax.
Abstract:
An imaging module or reader for electro-optically reading both far-out and close-in, one-dimensional symbols located at variable working distances from the module or reader, includes a solid-state imager having a linear array of image sensors arranged in a single row for capturing return light from the symbols, and an imaging lens assembly for adjustably focusing the return light onto the linear array of image sensors to enable the symbols to be read.
Abstract:
A plurality of solid-state imagers is mounted in a reader, such as a bi-optical, dual window, point-of-transaction workstation, for capturing images along different fields of view of diverse targets useful for customer identification, customer payment validation, operator surveillance, and coded indicia. The imagers are commonly mounted on a circuit board for joint installation at, and joint removal from, the reader for ease of serviceability.
Abstract:
A laser power control arrangement and method in an electro-optical reader for reading indicia includes an energizable laser for emitting a laser beam having an output power along a path. An internal light detector, e.g., a monitor photodiode, is mounted inside the laser for monitoring the output power of the laser. An external light detector, e.g., an auxiliary photodiode, is mounted outside the laser for monitoring the output power of the laser independently of the internal light detector. A guide, advantageously a light pipe or a diffuser, is positioned outside the laser in the path of the laser beam for guiding the laser beam from the laser to the external light detector. A controller is operatively connected to each light detector, for controlling a monitored output power of the laser beam by deenergizing the laser when the monitored output power of the laser beam exceeds a safe power level limit.
Abstract:
A solid-state imager is mounted in a reader, such as a bi-optical, dual window, point-of-transaction workstation, for capturing light along an optical axis over a field of view from diverse targets useful for customer identification, customer payment validation, operator surveillance, and coded indicia. An optical converter is located within the housing, for optically modifying and asymmetrically magnifying the field of view along mutually orthogonal directions generally perpendicular to the optical axis, and for increasing resolution of the imager along one of these directions.