MACHINE-BASED PATIENT-SPECIFIC SEIZURE CLASSIFICATION SYSTEM
    3.
    发明申请
    MACHINE-BASED PATIENT-SPECIFIC SEIZURE CLASSIFICATION SYSTEM 有权
    基于机器的患者特异性分类系统

    公开(公告)号:US20140235990A1

    公开(公告)日:2014-08-21

    申请号:US14182570

    申请日:2014-02-18

    Abstract: This disclosure is directed to a machine-based patient-specific seizure classification system. In general, an example system may comprise a non-linear SVM seizure classification system-on-chip (SoC) with multichannel EEG data acquisition and storage for epileptic patients is presented. The SoC may integrate a hardware-efficient log-linear Gaussian Basis Function engine, floating point piecewise linear natural log, and low-noise, high dynamic range readout circuits. In at least one example implementation, the SoC may consume 1.83W/classification while classifying 8 channel results with an average detection rate, average false alarm rate and latency of 95.1%, 0.94% and

    Abstract translation: 本公开涉及基于机器的患者特异性发作分类系统。 一般来说,示例系统可以包括用于癫痫患者的具有多通道EEG数据采集和存储的非线性SVM癫痫发作分类系统级芯片(SoC)。 SoC可以集成硬件高效的对数线性高斯基函数引擎,浮点分段线性自然对数和低噪声,高动态范围读出电路。 在至少一个示例实现中,SoC可以消耗1.83W /分类,同时对平均检测率,平均误报率和等待时间分别为95.1%,0.94%和<2s的8个信道结果进行分类。

Patent Agency Ranking