Abstract:
An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.
Abstract:
A light-trapping geometry enhances the sensitivity of strain, temperature, and/or electromagnetic field measurements using nitrogen vacancies in bulk diamond, which have exterior dimensions on the order of millimeters. In an example light-trapping geometry, a laser beam enters the bulk diamond, which may be at room temperature, through a facet or notch. The beam propagates along a path inside the bulk diamond that includes many total internal reflections off the diamond's surfaces. The NVs inside the bulk diamonds absorb the beam as it propagates. Photodetectors measure the transmitted beam or fluorescence emitted by the NVs. The resulting transmission or emission spectrum represents the NVs' quantum mechanical states, which in turn vary with temperature, magnetic field strength, electric field strength, strain/pressure, etc.
Abstract:
An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
Abstract:
A light-trapping geometry enhances the sensitivity of strain, temperature, and/or electromagnetic field measurements using nitrogen vacancies in bulk diamond, which have exterior dimensions on the order of millimeters. In an example light-trapping geometry, a laser beam enters the bulk diamond, which may be at room temperature, through a facet or notch. The beam propagates along a path inside the bulk diamond that includes many total internal reflections off the diamond's surfaces. The NVs inside the bulk diamonds absorb the beam as it propagates. Photodetectors measure the transmitted beam or fluorescence emitted by the NVs. The resulting transmission or emission spectrum represents the NVs' quantum mechanical states, which in turn vary with temperature, magnetic field strength, electric field strength, strain/pressure, etc.
Abstract:
An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
Abstract:
Modulating graphene's optical conductivity with an electrolyte nanopatterning technique reduces or eliminates scattering loss caused by rough edges from etching. This technique uses a resist mask patterned with features as small as 30 nm to shield graphene from ions in an electrolyte. It can provide a carrier density variation of about 1014 cm−2 across a length of just 15 nm. And it can be combined with a technique of growing or transferring graphene on atomically smooth hexagonal boron nitride (hBN) to increase graphene's carrier mobility, e.g., to 10,000 cm2/(V·s) or more. The resulting graphene metamaterials can be used to make voltage-tunable electro-optical devices, such as beam-steering devices, electro-optical switch and modulators, and reconfigurable holograms.
Abstract:
The Zeeman shift of electronic spins in nitrogen-vacancy (NV) centers in diamond has been exploited in lab-scale instruments for ultra-high-resolution, vector-based magnetic sensing. A quantum magnetometer in CMOS utilizing a diamond-nanocrystal layer with NVs or NV-doped bulk diamond on a chip-integrated system provides vector-based magnetic sensing in a compact package. The system performs two functions for the quantum magnetometry: (1) strong generation and efficient delivery of microwave for quantum-state control and (2) optical filtering/detection of spin-dependent fluorescence for quantum-state readout. The microwave delivery can be accomplished with a loop inductor or array of wires integrated into the chip below the nanodiamond layer or diamond. And the wire array can also suppress excitation light using a combination of plasmonic and (optionally) Talbot effects.
Abstract:
An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
Abstract:
Disclosed are dielectric cavity arrays with cavities formed by pairs of dielectric tips, wherein the cavities have low mode volume (e.g., 7*10−5λ3, where X is the resonance wavelength of the cavity array), and large quality factor Q (e.g., 106 or more). Applications for such dielectric cavity arrays include, but are not limited to, Raman spectroscopy, second harmonic generation, optical signal detection, microwave-to-optical transduction, and as light emitting devices.
Abstract:
Compactly-integrated electronic structures and associated systems and methods are provided. Certain embodiments relate to the ability to integrate nanowire-based detectors with optical components.