Methods and apparatus for improved imaging through scattering media

    公开(公告)号:US11609328B2

    公开(公告)日:2023-03-21

    申请号:US16411951

    申请日:2019-05-14

    Abstract: A light source may illuminate a scene that is obscured by fog. Light may reflect back to a time-resolved light sensor. For instance, the light sensor may comprise avalanche photodiodes that are not single-photon sensitive. The light sensor may perform a raster scan. The imaging system may determine reflectance and depth of the fog-obscured target. The imaging system may perform a probabilistic algorithm that exploits the fact that times of arrival of photons reflected from fog have a Gamma distribution that is different than the Gaussian distribution of times of arrival of photons reflected from the target. The imaging system may adjust frame rate locally depending on local density of fog, as indicated by a local Gamma distribution determined in a prior step. The imaging system may perform one or more of spatial regularization, temporal regularization, and deblurring.

    Methods and apparatus for imaging of layers

    公开(公告)号:US10796190B2

    公开(公告)日:2020-10-06

    申请号:US16059144

    申请日:2018-08-09

    Abstract: A sensor may measure light reflecting from a multi-layered object at different times. A digital time-domain signal may encode the measurements. Peaks in the signal may be identified. Each identified peak may correspond to a layer in the object. For each identified peak, a short time window may be selected, such that the time window includes a time at which the identified peak occurs. A discrete Fourier transform of that window of the signal may be computed. A frequency frame may be computed for each frequency in a set of frequencies in the transform. Kurtosis for each frequency frame may be computed. A set of high kurtosis frequency frames may be averaged, on a pixel-by-pixel basis, to produce a frequency image. Text characters that are printed on a layer of the object may be recognized in the frequency image, even though the layer is occluded.

    Secure training of multi-party deep neural network

    公开(公告)号:US10755172B2

    公开(公告)日:2020-08-25

    申请号:US15630944

    申请日:2017-06-22

    Abstract: A deep neural network may be trained on the data of one or more entities, also know as Alices. An outside computing entity, also known as a Bob, may assist in these computations, without receiving access to Alices' data. Data privacy may be preserved by employing a “split” neural network. The network may comprise an Alice part and a Bob part. The Alice part may comprise at least three neural layers, and the Bob part may comprise at least two neural layers. When training on data of an Alice, that Alice may input her data into the Alice part, perform forward propagation though the Alice part, and then pass output activations for the final layer of the Alice part to Bob. Bob may then forward propagate through the Bob part. Similarly, backpropagation may proceed backwards through the Bob part, and then through the Alice part of the network.

    Methods and apparatus for modulo sampling and recovery

    公开(公告)号:US10651865B2

    公开(公告)日:2020-05-12

    申请号:US16025991

    申请日:2018-07-02

    Abstract: A self-reset ADC may take a set of temporally equidistant, modulo samples of a bandlimited, analog signal, at a sampling rate that is greater than πe samples per second, where π is Archimedes' constant and is Euler's number. The bandlimited signal may have a bandwidth of 1 Hertz and a maximum frequency of 0.5 Hertz. These conditions of sampling rate, bandwidth and maximum frequency may ensure that an estimated signal may be recovered from the set of modulo samples. This estimated signal may be equal to the bandlimited signal plus a constant. The constant may be equal to an integer multiple of the modulus of the centered modulo operation employed to take the modulo samples.

    Methods and apparatus for retinal retroreflection imaging

    公开(公告)号:US10248194B2

    公开(公告)日:2019-04-02

    申请号:US15142165

    申请日:2016-04-29

    Abstract: A video camera captures images of retroreflection from the retina of an eye. These images are captured while the eye rotates. Thus, different images are captured in different rotational positions of the eye. A computer calculates, for each image, the eye's direction of gaze. In turn, the direction of gaze is used to calculate the precise location of a small region of the retina at which the retroflection occurs. A computer calculates a digital image of a portion of the retina by summing data from multiple retroreflection images. The digital image of the retina may be used for many practical applications, including medical diagnosis and biometric identification. In some scenarios, the video camera captures detailed images of the retina of a subject, while the subject is so far away that the rest of the subject's face is below the diffraction limit of the camera.

    Methods and apparatus for optical fiber imaging

    公开(公告)号:US10003725B2

    公开(公告)日:2018-06-19

    申请号:US15861645

    申请日:2018-01-03

    CPC classification number: H04N5/2256 G02B6/04 G02B6/06 H04N5/2257

    Abstract: An open-ended, incoherent bundle of optical fibers transmits light from a nearby scene. A camera captures images of the back end of the fiber bundle. Because the fiber bundle is incoherent, the captured image is shuffled, in the sense that the relative position of pixels in the image differs from the relative position of the scene regions that correspond to the pixels. Calibration is performed in order to map from the front end positions to the back-end positions of the fibers. In the calibration, pulses of light are delivered, in such a way that the time at which light reflecting from a given pulse enters a given fiber directly correlates to the position of the front end of the given fiber. A time-of-flight sensor takes measurements indicative of these time signatures. Based on the map obtained from calibration, a computer de-shuffles the image.

    Methods and apparatus for imaging and 3D shape reconstruction

    公开(公告)号:US10918272B2

    公开(公告)日:2021-02-16

    申请号:US16732220

    申请日:2019-12-31

    Abstract: An otoscope may project a temporal sequence of phase-shifted fringe patterns onto an eardrum, while a camera in the otoscope captures images. A computer may calculate a global component of these images. Based on this global component, the computer may output an image of the middle ear and eardrum. This image may show middle ear structures, such as the stapes and incus. Thus, the otoscope may “see through” the eardrum to visualize the middle ear. The otoscope may project another temporal sequence of phase-shifted fringe patterns onto the eardrum, while the camera captures additional images. The computer may subtract a fraction of the global component from each of these additional images. Based on the resulting direct-component images, the computer may calculate a 3D map of the eardrum.

Patent Agency Ranking