Abstract:
In a method and apparatus for correcting image data from a medical imaging scan of a subject, into which subject a specified amount of an imaging substance has been introduced, a region of the image data, containing an anomalous proportion of the imaging substance introduced, is identified. For the identified region a regional value of a variable in the image data associated with the imaging substance is determined. The regional value is used to determine the proportion of the substance in the region, and the proportion is subtracted from the specified amount of the imaging substance.
Abstract:
In a method and an apparatus to visualize nuclear medicine data from different modalities in a single image, image data sets acquired with different modalities are aligned with a data set representing corresponding anatomical data. The image data in each data set are segmented into separate regions, representing respective structures of interest, with reference to a segmentation derived from anatomical data. For each region, a corresponding segment of image data is selected from a selected image data set. The selected segments of the image data set are combined to generate a multi-fused image of the regions, by applying spatially dependent look-up tables to the multiple image data sets, thereby to determine whether each data set is hidden or displayed in each region.
Abstract:
In a method and apparatus for calibrating image data from a given medical imaging protocol, reference image data is obtained from a scan of a reference object using the medical imaging protocol, and the obtained reference image data of the reference object is compared to standard reference image data for the reference object. The obtained reference image data is then modified to reduce an error between the obtained reference image data and the standard reference image data. Subject image data id then obtained from a scan of a subject using the medical imaging protocol, and modified based on the modified reference image data. A value of a variable is obtained from the modified subject image data, for display with unmodified subject image data.
Abstract:
In a method and apparatus for correcting image data from a medical imaging scan of a subject, into which subject a specified amount of an imaging substance has been introduced, a region of the image data, containing an anomalous proportion of the imaging substance introduced, is identified. For the identified region a regional value of a variable in the image data associated with the imaging substance is determined. The regional value is used to determine the proportion of the substance in the region, and the proportion is subtracted from the specified amount of the imaging substance.
Abstract:
In a method and apparatus for calibrating image data from a given medical imaging protocol, reference image data is obtained from a scan of a reference object using the medical imaging protocol, and the obtained reference image data of the reference object is compared to standard reference image data for the reference object. The obtained reference image data is then modified to reduce an error between the obtained reference image data and the standard reference image data. Subject image data id then obtained from a scan of a subject using the medical imaging protocol, and modified based on the modified reference image data. A value of a variable is obtained from the modified subject image data, for display with unmodified subject image data.
Abstract:
In a method or apparatus for identifying a region of interest in a medical image of a subject, at least one local maximum region of the image is determined for which a value of a given variable is a local maximum value. A user-selection of an initial voxel in the image is registered. As the region of interest, a connected set of voxels for which values of the given variable are greater than a threshold is selected, the selected set of voxels comprising a first local maximum region at a distance from the user-selected voxel, and the threshold being a given fraction of the local maximum value of the first local maximum region in the set.
Abstract:
In a method and apparatus for analyzing medical imaging data of a subject from an imaging modality using a tracer, data from detection of tracer emission events at least one region of a scanned imaging volume are obtained, and the data processed to establish sub-periods or time points within a scan period for the emission events. A rate of change of emission events per unit time for a given region is then calculated, for example by obtaining a number of emission events in each sub-period in the given region, and fitting a line through the values for the sub-periods.
Abstract:
In a method and apparatus for analyzing and correcting medical imaging data of a subject, an image data set is obtained from a scan of the subject at a first time point with respect to a defined time origin. A measurement of a time-dependent variable is then determined for the data set, and an estimated value for the time-dependent variable at an estimate time point is extrapolated from the data set.
Abstract:
In a method and apparatus for analyzing and correcting medical imaging data of a subject, an image data set is obtained from a scan of the subject at a first time point with respect to a defined time origin. A measurement of a time-dependent variable is then determined for the data set, and an estimated value for the time-dependent variable at an estimate time point is extrapolated from the data set.
Abstract:
In a method and an apparatus to visualize nuclear medicine data from different modalities in a single image, image data sets acquired with different modalities are aligned with a data set representing corresponding anatomical data. The image data in each data set are segmented into separate regions, representing respective structures of interest, with reference to a segmentation derived from anatomical data. For each region, a corresponding segment of image data is selected from a selected image data set. The selected segments of the image data set are combined to generate a multi-fused image of the regions, by applying spatially dependent look-up tables to the multiple image data sets, thereby to determine whether each data set is hidden or displayed in each region.