Abstract:
A system may comprise a plurality of signal processing paths, a bin-wise combiner, an inverse transformation block, and a DAC. Each signal processing path may comprise a transformation block that is operable to transform a first time-domain digital signal to an associated frequency-domain signal having a plurality of subband signals. The bin-wise combiner may be operable to combine corresponding subband signals of the plurality of signal processing paths. The inverse transformation block may be operable to transform output of the bin-wise combiner to an second time-domain signal. The DAC may be operable to converts the second time-domain signal to a corresponding analog signal.
Abstract:
A system may comprise a plurality of signal processing paths, a bin-wise combiner, an inverse transformation block, and a DAC. Each signal processing path may comprise a transformation block that is operable to transform a first time-domain digital signal to an associated frequency-domain signal having a plurality of subband signals. The bin-wise combiner may be operable to combine corresponding subband signals of the plurality of signal processing paths. The inverse transformation block may be operable to transform output of the bin-wise combiner to an second time-domain signal. The DAC may be operable to converts the second time-domain signal to a corresponding analog signal.
Abstract:
An impulse noise mitigation circuit (INMC) may set a cut-off frequency of each of two high pass filters to bound a frequency bandwidth of a desired signal, wherein a first of the two filters allows frequencies higher than the frequency bandwidth of the desired signal, and a second of the two filters allows frequencies lower than the frequency bandwidth of the desired signal. The INMC may compute and store a mean magnitude separately for a first signal response of the first filter and a second signal response of the second filter. The INMC may select the first filter for impulse noise mitigation when the mean magnitude of the second filter is greater than the mean magnitude of the first filter. The INMC may select the second filter for impulse noise mitigation when the mean magnitude of the first filter is greater than the second filter.
Abstract:
An impulse noise mitigation circuit (INMC) may set a cut-off frequency of each of two high pass filters to bound a frequency bandwidth of a desired signal, wherein a first of the two filters allows frequencies higher than the frequency bandwidth of the desired signal, and a second of the two filters allows frequencies lower than the frequency bandwidth of the desired signal. The INMC may compute and store a mean magnitude separately for a first signal response of the first filter and a second signal response of the second filter. The INMC may select the first filter for impulse noise mitigation when the mean magnitude of the second filter is greater than the mean magnitude of the first filter. The INMC may select the second filter for impulse noise mitigation when the mean magnitude of the first filter is greater than the second filter.
Abstract:
An impulse noise mitigation circuit (INMC) may set a cut-off frequency of each of two high pass filters to bound a frequency bandwidth of a desired signal, wherein a first of the two filters allows frequencies higher than the frequency bandwidth of the desired signal, and a second of the two filters allows frequencies lower than the frequency bandwidth of the desired signal. The INMC may compute and store a mean magnitude separately for a first signal response of the first filter and a second signal response of the second filter. The INMC may select the first filter for impulse noise mitigation when the mean magnitude of the second filter is greater than the mean magnitude of the first filter. The INMC may select the second filter for impulse noise mitigation when the mean magnitude of the first filter is greater than the second filter.
Abstract:
An impulse noise mitigation circuit (INMC) may set a cut-off frequency of each of two high pass filters to bound a frequency bandwidth of a desired signal, wherein a first of the two filters allows frequencies higher than the frequency bandwidth of the desired signal, and a second of the two filters allows frequencies lower than the frequency bandwidth of the desired signal. The INMC may compute and store a mean magnitude separately for a first signal response of the first filter and a second signal response of the second filter. The INMC may select the first filter for impulse noise mitigation when the mean magnitude of the second filter is greater than the mean magnitude of the first filter. The INMC may select the second filter for impulse noise mitigation when the mean magnitude of the first filter is greater than the second filter.
Abstract:
Received data packets are groomed to improve performance of MPEG-2 transport stream packet in a digital video broadcasting system. Multitude of crosschecking techniques are applied to ensure that crucial pieces of information such as the packet identifier (PID) field, the continuity counter (CC) field, table ID, section length, IP header checksum, table and frame boundaries, application data table size are corrected if necessary.
Abstract:
A system may comprise a plurality of signal processing paths, a bin-wise combiner, an inverse transformation block, and a DAC. Each signal processing path may comprise a transformation block that is operable to transform a first time-domain digital signal to an associated frequency-domain signal having a plurality of subband signals. The bin-wise combiner may be operable to combine corresponding subband signals of the plurality of signal processing paths. The inverse transformation block may be operable to transform output of the bin-wise combiner to an second time-domain signal. The DAC may be operable to converts the second time-domain signal to a corresponding analog signal.
Abstract:
A system may comprise a plurality of signal processing paths, a bin-wise combiner, an inverse transformation block, and a DAC. Each signal processing path may comprise a transformation block that is operable to transform a first time-domain digital signal to an associated frequency-domain signal having a plurality of subband signals. The bin-wise combiner may be operable to combine corresponding subband signals of the plurality of signal processing paths. The inverse transformation block may be operable to transform output of the bin-wise combiner to an second time-domain signal. The DAC may be operable to converts the second time-domain signal to a corresponding analog signal.
Abstract:
An impulse noise mitigation circuit (INMC) may set a cut-off frequency of each of two high pass filters to bound a frequency bandwidth of a desired signal, wherein a first of the two filters allows frequencies higher than the frequency bandwidth of the desired signal, and a second of the two filters allows frequencies lower than the frequency bandwidth of the desired signal. The INMC may compute and store a mean magnitude separately for a first signal response of the first filter and a second signal response of the second filter. The INMC may select the first filter for impulse noise mitigation when the mean magnitude of the second filter is greater than the mean magnitude of the first filter. The INMC may select the second filter for impulse noise mitigation when the mean magnitude of the first filter is greater than the second filter.