Abstract:
A system comprises a digital predistortion circuit comprising: a first quantity of delay circuits configured to delay a signal to be predistorted; a second quantity of filter tap circuits, wherein the second quantity is smaller than the first quantity; and a delay-to-filter-taps mapping circuit that is operable to map each output of a first subset of the delay circuits to a corresponding input of the filter tap circuits. The system may comprise circuitry operable to select which of the first quantity of delay circuits is in the first subset. The selection of which of the first quantity of delay circuits is in the first subset may be based on a temperature measurement. The digital predistortion circuit may comprise cross-term generation circuitry operable to generate cross-term signals corresponding to the cross products of multiple, differently-delayed versions of a signal input to the digital predistortion circuit.
Abstract:
Methods and systems for multi-path video and network channels may comprise a communication device comprising a wideband tuner (WB) and a narrowband tuner (NB). A video channel and a network channel may be received in the WB when the device is operating in a first stage. A video channel and a network channel may be received in the WB and the network channel may also be received in the NB when the device is operating in a second stage. The network channel may be received in the NB when the device is operating in a third stage. The reception of the network channel from both the WB and NB may enable a continuous reception of the network channel in a transition between the first and third stages. The WB may be operable to receive a plurality of channels and the NB may be operable to receive a single channel.
Abstract:
Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals. A multiplier may be configured to cancel the blocker signal utilizing the determined complex coupling coefficients.
Abstract:
Methods and systems for repurposing of a global navigation satellite system receiver for receiving low-earth orbit (LEO) communication satellite timing signals may comprise receiving a medium Earth orbit (MEO) satellite signal and/or a LEO signal in a receiver of the communication device. The MEO or LEO signal may be down-converted, and a position of the communication device may be calculated utilizing the down-converted signal. The signal may be down-converted utilizing a local oscillator signal generated by a phase locked loop (PLL), which may be delta-sigma modulated via a fractional-N divider. A clock signal may be communicated to the PLL utilizing a temperature-compensated crystal oscillator. The signal may be down-converted to an intermediate frequency or down-converted directly to baseband frequencies. The signal may be processed utilizing surface acoustic wave (SAW) filters. In-phase and quadrature signals may be processed in the RF path utilizing a two-stage polyphase filter.
Abstract:
An electronic receiver may generate a differential detection sequence based on a received symbol sequence and based on a m-symbol delayed version of the received symbol sequence, where m is an integer greater than 1. The particular differential detection sequence may be a result of an element-by-element multiplication of the particular received symbol sequence and the conjugate of an m-symbol delayed version of the particular received symbol sequence. The receiver may calculate differential decision metrics based on the differential detection sequence and based on a set of differential symbol sequences generated from the set of possible transmitted symbol sequences. The receiver may generate a decision as to which of a set of possible transmitted symbol sequences resulted in the received symbol sequence, where the decision is based on the differential decision metrics and the set of possible transmitted symbols sequences.
Abstract:
An integrated circuit may comprise a tuner operable to digitize a band of frequencies comprising a plurality of television channels, a crossbar operable to select one or more of the plurality of television channels output by the tuner, a plurality of demodulators operable to receive the selected one or more television channels from the crossbar and demodulate the selected one or more television channels to recover a plurality of transport streams, a transport module operable to multiplex the plurality of transport streams into a single packet stream, and a framer operable to: encapsulate packets of the plurality of transport streams into transport stream frames of a serial datastream, and insert filler frames into the serial datastream after every Nth transport stream frame of the serial datastream, where N is an integer.
Abstract:
Systems and methods for adjusting timing in a communication system, such as an OFDM system are described. In one implementation an error signal is generated to adjust the timing of a variable rate interpolator so as to adjust FFT timing. The error signal may be based on detection of significant peaks in an estimate of the impulse response of the channel, with the peak locations being tracked over subsequent symbols and the system timing adjusted in response to changes in the peaks.
Abstract:
An electronic receiver may generate a differential detection sequence based on a received symbol sequence and based on a m-symbol delayed version of the received symbol sequence, where m is an integer greater than 1. The particular differential detection sequence may be a result of an element-by-element multiplication of the particular received symbol sequence and the conjugate of an m-symbol delayed version of the particular received symbol sequence. The receiver may calculate differential decision metrics based on the differential detection sequence and based on a set of differential symbol sequences generated from the set of possible transmitted symbol sequences. The receiver may generate a decision as to which of a set of possible transmitted symbol sequences resulted in the received symbol sequence, where the decision is based on the differential decision metrics and the set of possible transmitted symbols sequences.
Abstract:
A signal receiver may be configured to determine when signal generation adjustments directed to particular components of signals received by the signal receiver, cause performance changes relating to effects of the signal generation adjustments on other components of the received signals. Operations of the signal receiver may then be controlled based on the performance changes, to mitigate at least some of the effects on the one or more other components of the signals. The performance changes may comprise amplitude glitches, phase glitches, and/or bit or packet errors. The signal generation adjustments may comprise channel-to-frequency re-assignment. Controlling operations of the signal receiver may comprise adjusting such parameters as amplification gain and/or tracking loop bandwidth, and/or determining whether (or not) to ignore bit/packet errors.
Abstract:
A calibration system comprises control circuitry and waveform capture circuitry. The control circuitry selects a first calibration waveform for input to a digital predistortion circuit of a transmitter. The capture circuitry captures a first waveform output by the transmitter in response to the first calibration waveform. The control circuitry compares the first calibration waveform to the captured first waveform. The control circuitry selects a first one of a plurality of mapping circuit configurations based on the result of the comparison, wherein the mapping circuit is configured to map outputs of a plurality of delay circuits among inputs of a plurality of filter taps. The control circuitry stores the one of the mapping circuit configurations in nonvolatile memory associated with the transmitter.