Method and system for full spectrum capture sample rate adaptation

    公开(公告)号:US10681412B2

    公开(公告)日:2020-06-09

    申请号:US13857778

    申请日:2013-04-05

    Abstract: An electronic device may be operable to sample a signal during an analog-to-digital conversion using an analog-to-digital converter in the electronic device, and the signal may comprise a wide bandwidth and a plurality of channels. The electronic device may adaptively change a sample rate of the sampling to move aliasing out of a region of one or more desired channels of the plurality of channels. The electronic device may change the sample rate using a variable oscillator in the electronic device. The change of the sample rate may comprise, for example, increasing or decreasing the sample rate by a particular percentage. In response to the change of the sample rate, the electronic device may perform, using a variable rate interpolator in the electronic device, variable rate interpolation. The variable rate interpolator may comprise, for example, a finite impulse response filter.

    Method and system for reconfigurable time-interleaved ADC for direct conversion K-band and L-band I/Q

    公开(公告)号:US10277955B1

    公开(公告)日:2019-04-30

    申请号:US14881654

    申请日:2015-10-13

    Abstract: A signal receiver chip may be configured to receive a satellite signal, and when the satellite signal is partially-processed off-chip, to bypass at least a portion of processing functions applied in the signal receiver chip during processing of satellite signals. The bypassed processing functions may comprise or correspond to signal band conversions. The satellite signal chip may generate an output signal, corresponding to the satellite signal, with the output signal being configured for communication to a peer device (e.g., satellite STB). The output signal may be generated and/or configured such that to enable distributing content carried in the output signal to a plurality of client devices in a local network serviced by the peer device. The signal receiver chip may combine a plurality of portions, corresponding to a plurality of satellite signals, into the output signal.

    Method and system for guard band detection and frequency offset detection

    公开(公告)号:US10256898B2

    公开(公告)日:2019-04-09

    申请号:US15692459

    申请日:2017-08-31

    Abstract: Methods and systems are provided for guard band detection and frequency offset detection. For each of a plurality of downconverted signals, frequency related information associated with one or more corresponding circuits used in obtaining the plurality of downconverted signals may be determined; and based on the determined frequency related information, one or both of a band stacking operation and a channel stacking operation may be performed. During the band stacking operation, frequency bands are not stacked on each other or stacked frequency bands do not overlap. During the channel stacking operation, channels are not stacked on each other or stacked channels do not overlap. The frequency related information may be determined based on predefined frequency related parameters associated with the corresponding circuits. Frequency corrections may be performed, on output signals corresponding to the band stacking operation and/or the channel stacking operation, based on the frequency related information.

    OUTDOOR UNIT RESONATOR CORRECTION
    4.
    发明申请

    公开(公告)号:US20190068227A1

    公开(公告)日:2019-02-28

    申请号:US16171463

    申请日:2018-10-26

    Abstract: A system comprises a microwave backhaul outdoor unit having a first resonant circuit, phase error determination circuitry, and phase error compensation circuitry. The first resonant circuit is operable to generate a first signal characterized by a first amount of phase noise and a first amount of temperature stability. The phase error determination circuitry is operable to generate a phase error signal indicative of phase error between the first signal and a second signal, wherein the second signal is characterized by a second amount of phase noise that is greater than the first amount of phase noise, and the second signal is characterized by a second amount of temperature instability that is less than the first amount of temperature instability. The phase error compensation circuitry is operable to adjust the phase of a data signal based on the phase error signal, the adjustment resulting in a phase compensated signal.

    Method and system for improved cross polarization rejection and tolerating coupling between satellite signals

    公开(公告)号:US10135573B2

    公开(公告)日:2018-11-20

    申请号:US15880321

    申请日:2018-01-25

    Abstract: Methods and systems for improved cross polarization rejection and tolerating of coupling between satellite signals may comprise receiving radio frequency (RF) signals on a chip, where the RF signals comprising a desired signal and at least one crosstalk signal. The received RF signals may be down-converted to baseband frequencies, and the down-converted signals are converted to digital signals. Crosstalk may be determined by estimating complex coupling coefficients between the received RF signals utilizing a de-correlation algorithm across a frequency bandwidth comprising the desired and crosstalk signals. The down-converted signals may be low-pass filtered and summed with an output signal from a cancellation filter. The complex coupling coefficients may be determined utilizing the de-correlation algorithm on the summed signals, and may be used to configure the cancellation filter. Crosstalk may be canceled in a receiver path from a cancellation filter receiving low-pass filtered down-converted signals from another path.

    Satellite Reception Assembly Installation and Maintenance

    公开(公告)号:US20180191427A1

    公开(公告)日:2018-07-05

    申请号:US15906585

    申请日:2018-02-27

    CPC classification number: H04B7/18523

    Abstract: A direct broadcast satellite (DBS) reception assembly may receive a desired satellite signal and process the desired satellite signal for output to a gateway. The DBS assembly may also receive one or more undesired satellite signals and determine a performance metric of the one or more undesired satellite signals. The elevation angle of the assembly and/or the azimuth angle of the assembly may be adjusted based on the performance metric(s) of the undesired satellite signal(s). The adjusting of the elevation angle and/or the azimuth angle may comprise electronically steering a directivity of a receive radiation pattern of the DBS reception assembly and/or mechanically steering one or more components of the assembly via motors, servos, actuators, MEMS, and/or the like. The performance metric may be received signal strength of the undesired signals, received signal strength of the desired signal, SNR of the desired signal, and/or SNR of the undesired signals.

Patent Agency Ranking