Abstract:
Systems and methods are provided for handling jitter improvement in transmitters. During processing of input data for serial transmission, it may be determined if jitter may occur, and when jitter occurs one or more adjustments may be determined, based on dummy data, to reduce jitter in an output corresponding to the input data. The one or more adjustments may then be applied during processing of the input data, to reduce jitter in a serial output corresponding to the input data. The dummy data may be generated based on the input data. The dummy data may be configured such that it may generate corresponding dummy current pulses which may be used in controlling supply variations during generation of the serial output. The use of the dummy data may be selectively turned on or off.
Abstract:
Methods and systems for multi-path video and network channels may comprise a communication device comprising a wideband tuner (WB) and a narrowband tuner (NB). A video channel and a network channel may be received in the WB when the device is operating in a first stage. A video channel and a network channel may be received in the WB and the network channel may also be received in the NB when the device is operating in a second stage. The network channel may be received in the NB when the device is operating in a third stage. The reception of the network channel from both the WB and NB may enable a continuous reception of the network channel in a transition between the first and third stages. The WB may be operable to receive a plurality of channels and the NB may be operable to receive a single channel.
Abstract:
Systems and methods are provided for handling jitter improvement in transmitters. During processing of input data for serial transmission, it may be determined if jitter may occur, and when jitter occurs one or more adjustments may be determined, based on dummy data, to reduce jitter in an output corresponding to the input data. The one or more adjustments may then be applied during processing of the input data, to reduce jitter in a serial output corresponding to the input data. The dummy data may be generated based on the input data. The dummy data may be configured such that it may generate corresponding dummy current pulses which may be used in controlling supply variations during generation of the serial output. The use of the dummy data may be selectively turned on or off.
Abstract:
Each of a plurality of modules comprises a respective one of a plurality of antenna elements, and each of a subset of the plurality of modules comprising a respective one of a plurality of transceivers, wherein the plurality of modules are interconnected via one or more communication links. The circuitry may be operable to receive a calibration signal via the plurality of antenna elements, determine, for each one of the antenna elements, a time and/or phase of arrival of the calibration signal, calculate, based on the time and/or phase of arrival of the calibration signal at each of the plurality of antenna elements, electrical distances between the plurality of antenna elements on the one or more communication links, and calculate beamforming coefficients for use with the plurality of antenna elements based on the electrical distances.
Abstract:
Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals. A multiplier may be configured to cancel the blocker signal utilizing the determined complex coupling coefficients.
Abstract:
A communication receiver which applies signal processing for quantitatively estimating receive signal factors such as communication channel quality, signal characteristics, and overall system received bit error rate (BER) or packet error rate (PER) and which applies a general algorithm for mapping these estimated factors to control receiver performance and minimize power consumption.
Abstract:
Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals. A multiplier may be configured to cancel the blocker signal utilizing the determined complex coupling coefficients.
Abstract:
A communication receiver which applies signal processing for quantitatively estimating receive signal factors such as communication channel quality, signal characteristics, and overall system received bit error rate (BER) or packet error rate (PER) and which applies a general algorithm for mapping these estimated factors to control receiver performance and minimize power consumption.
Abstract:
Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is aliased onto a desired signal by a timing offset in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal. A decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals. A multiplier may be configured to cancel the blocker signal utilizing the determined complex coupling coefficients.
Abstract:
Methods and systems for a sampled loop filter in a phase locked loop (PLL) may comprise a phase locked loop (PLL) comprising a phase frequency detector, a sampled loop filter comprising a plurality of capacitors and at least one switch, a plurality of voltage controlled oscillators (VCOs) coupled to said sampled loop filter, and a frequency divider. The PLL generates at least one clock signal, and the sampled loop filter samples an output signal from the phase frequency detector when an average of charge provided to a first of the plurality of capacitors in the sampled loop filter is zero. The frequency divider may be a fractional-N divider. A second switch in said sampled loop filter may have switching times that are non-overlapping with switching times of the at least one switch. Capacitors may be coupled to ground from each terminal of the second switch.