Abstract:
Methods and systems are provided for using frequency spreading during communications, in particular communications in which multiple carriers (or subcarriers) are used. The frequency spreading may comprise generating a plurality of spreading data vectors based on transmit data, such as by application of a spreading matrix to portions of the transmit data. Each spreading data vector may comprise a plurality of elements, for assignment to the multiple subcarriers. The receive-side device may then apply frequency de-spreading, to obtain the original transmit data. The frequency de-spreading may comprise use of the same spreading matrix on data extracted from received signals, which (the data) may correspond to the plurality of spreading data vectors.
Abstract:
Methods and systems are provided for using frequency spreading during communications, in particular communications in which multiple carriers (or subcarriers) are used. The frequency spreading may comprise generating a plurality of spreading data vectors based on transmit data, such as by application of a spreading matrix to portions of the transmit data. Each spreading data vector may comprise a plurality of elements, for assignment to the multiple subcarriers. The receive-side device may then apply frequency de-spreading, to obtain the original transmit data. The frequency de-spreading may comprise use of the same spreading matrix on data extracted from received signals, which (the data) may correspond to the plurality of spreading data vectors.
Abstract:
Methods and systems are provided for using frequency spreading during communications, in particular communications in which multiple carriers (or subcarriers) are used. The frequency spreading may comprise generating a plurality of spreading data vectors based on transmit data, such as by application of a spreading matrix to portions of the transmit data. Each spreading data vector may comprise a plurality of elements, for assignment to the multiple subcarriers. The receive-side device may then apply frequency de-spreading, to obtain the original transmit data. The frequency de-spreading may comprise use of the same spreading matrix on data extracted from received signals, which (the data) may correspond to the plurality of spreading data vectors.
Abstract:
Methods and systems for precise temperature and timebase PPM error estimation using multiple timebases may comprise in an electronic device comprising a plurality of timebases and measuring a temperature corresponding to the timebases. Frequencies of the timebases at the measured temperature may be compared to determine differential error functions for the timebases. A fine reading of the temperature corresponding to the timebases may be generated based, at least in part, on the measured temperature and the determined differential error functions for the timebases. The timebases may be calibrated utilizing the generated fine reading of the temperature. The timebases may comprise different order temperature dependencies. Models of temperature dependencies of each of the timebases based may be updated, at least in part, on the fine reading of the temperature. A global navigation satellite system (GNSS) clock signal may be periodically utilized to improve the accuracy of the calibration of the timebases.
Abstract:
Methods and systems for precise temperature and timebase PPM error estimation using multiple timebases may comprise in an electronic device comprising a plurality of timebases and measuring a temperature corresponding to the timebases. Frequencies of the timebases at the measured temperature may be compared to determine differential error functions for the timebases. A fine reading of the temperature corresponding to the timebases may be generated based, at least in part, on the measured temperature and the determined differential error functions for the timebases. The timebases may be calibrated utilizing the generated fine reading of the temperature. The timebases may comprise different order temperature dependencies. Models of temperature dependencies of each of the timebases based may be updated, at least in part, on the fine reading of the temperature. A global navigation satellite system (GNSS) clock signal may be periodically utilized to improve the accuracy of the calibration of the timebases.
Abstract:
Methods and systems are provided for using frequency spreading during communications, in particular communications in which multiple carriers (or subcarriers) are used. The frequency spreading may comprise generating a plurality of spreading data vectors based on transmit data, such as by application of a spreading matrix to portions of the transmit data. Each spreading data vector may comprise a plurality of elements, for assignment to the multiple subcarriers. The receive-side device may then apply frequency de-spreading, to obtain the original transmit data. The frequency de-spreading may comprise use of the same spreading matrix on data extracted from received signals, which (the data) may correspond to the plurality of spreading data vectors.
Abstract:
Methods and systems are provided for using frequency spreading during communications, in particular communications in which multiple carriers (or subcarriers) are used. The frequency spreading may comprise generating a plurality of spreading data vectors based on transmit data, such as by application of a spreading matrix to portions of the transmit data. Each spreading data vector may comprise a plurality of elements, for assignment to the multiple subcarriers. The receive-side device may then apply frequency de-spreading, to obtain the original transmit data. The frequency de-spreading may comprise use of the same spreading matrix on data extracted from received signals, which (the data) may correspond to the plurality of spreading data vectors.
Abstract:
Methods and systems for precise temperature and timebase ppm error estimation using multiple timebases may comprise measuring a temperature corresponding to the plurality of timebases. The frequencies of the timebases may be compared to generate error functions for the timebases, and generating a more accurate reading of the temperature based, at least in part, on the measured temperature and the error functions for the timebases. The timebases may be calibrated utilizing the generated more accurate reading. The plurality of timebases may comprise different order temperature dependencies. The models of temperature dependencies of each of the plurality of timebases may be updated based, at least in part, on the fine reading of the temperature corresponding to the plurality of timebases. A global navigation satellite system (GNSS) clock signal may be utilized periodically to improve the accuracy of the calibration of the plurality of timebases.
Abstract:
Methods and systems for precise temperature and timebase ppm error estimation using multiple timebases may comprise measuring a temperature corresponding to the plurality of timebases. The frequencies of the timebases may be compared to generate error functions for the timebases, and generating a more accurate reading of the temperature based, at least in part, on the measured temperature and the error functions for the timebases. The timebases may be calibrated utilizing the generated more accurate reading. The plurality of timebases may comprise different order temperature dependencies. The models of temperature dependencies of each of the plurality of timebases may be updated based, at least in part, on the fine reading of the temperature corresponding to the plurality of timebases. A global navigation satellite system (GNSS) clock signal may be utilized periodically to improve the accuracy of the calibration of the plurality of timebases.
Abstract:
Methods and systems for precise temperature and timebase ppm error estimation using multiple timebases may comprise measuring a temperature corresponding to the plurality of timebases. The frequencies of the timebases may be compared to generate error functions for the timebases, and generating a more accurate reading of the temperature based, at least in part, on the measured temperature and the error functions for the timebases. The timebases may be calibrated utilizing the generated more accurate reading. The plurality of timebases may comprise different order temperature dependencies. The models of temperature dependencies of each of the plurality of timebases may be updated based, at least in part, on the fine reading of the temperature corresponding to the plurality of timebases. A global navigation satellite system (GNSS) clock signal may be utilized periodically to improve the accuracy of the calibration of the plurality of timebases.