Abstract:
A protective coating for a substrate includes a diamond-like carbon (DLC) layer overlying the substrate and having gaps where the substrate is not protected by the diamond-like carbon layer. The protective coating also includes a self-assembled monolayer formed in the gaps of the diamond-like carbon layer.
Abstract:
A microactuator comprises a mounting block, a head suspension, a compliant joint for connecting the mounting block to the head suspension, and a piezoelectric element for deforming the compliant joint in order to rotate the head suspension with respect to the mounting block. An encapsulant covers an exposed surface of the microactuator. The encapsulant comprises a self-assembled monolayer formed of an organosilicone or organosilane, where the self-assembled monolayer has a self-limiting thickness of one layer of a molecule.
Abstract:
A microactuator comprises a mounting block, a head suspension, a compliant joint for connecting the mounting block to the head suspension, and a piezoelectric element for deforming the compliant joint in order to rotate the head suspension with respect to the mounting block. An encapsulant covers an exposed surface of the microactuator. The encapsulant comprises a self-assembled monolayer formed of an organosilicone or organosilane, where the self-assembled monolayer has a self-limiting thickness of one layer of a molecule.
Abstract:
The present invention is a lubricative and protective thin film often used within micro electromechanical systems. The film comprises an adhesion layer and a self-assembled monolayer, the self-assembled monolayer having a head group bonded to the adhesion layer and a tail group attached to the head group.
Abstract:
Organic anti-stiction coatings such as, for example, hydrocarbon and fluorocarbon based self-assembled organosilanes and siloxanes applied either in solvent or via chemical vapor deposition, are selectively etched using a UV-Ozone (UVO) dry etching technique in which the portions of the organic anti-stiction coating to be etched are exposed simultaneously to multiple wavelengths of ultraviolet light that excite and dissociate organic molecules from the anti-stiction coating and generate atomic oxygen from molecular oxygen and ozone so that the organic molecules react with atomic oxygen to form volatile products that are dissipated, resulting in removal of the exposed portions of the anti-stiction coating. A hybrid etching process using heat followed by UVO exposure may be used. A shadow mask (e.g., of glass or quartz), a protective material layer, or other mechanism may be used to selective expose the portions of the anti-stiction coating to be UVO etched. Such selective UVO etching may be used, for example, to expose wafer bond lines prior to wafer-to-wafer bonding in order to increase bond shear and adhesion strength, to expose bond pads in preparation for electrical or other connections, or for general removal of anti-stiction coating materials from metal or other material surfaces. One specific embodiment uses two wavelengths of ultraviolet light, one at around 184.9 nm and the other at around 253.7 nm.
Abstract:
Organic anti-stiction coatings such as, for example, hydrocarbon and fluorocarbon based self-assembled organosilanes and siloxanes applied either in solvent or via chemical vapor deposition, are selectively etched using a UV-Ozone (UVO) dry etching technique in which the portions of the organic anti-stiction coating to be etched are exposed simultaneously to multiple wavelengths of ultraviolet light that excite and dissociate organic molecules from the anti-stiction coating and generate atomic oxygen from molecular oxygen and ozone so that the organic molecules react with atomic oxygen to form volatile products that are dissipated, resulting in removal of the exposed portions of the anti-stiction coating. A hybrid etching process using heat followed by UVO exposure may be used. A shadow mask (e.g., of glass or quartz), a protective material layer, or other mechanism may be used to selective expose the portions of the anti-stiction coating to be UVO etched. Such selective UVO etching may be used, for example, to expose wafer bond lines prior to wafer-to-wafer bonding in order to increase bond shear and adhesion strength, to expose bond pads in preparation for electrical or other connections, or for general removal of anti-stiction coating materials from metal or other material surfaces. One specific embodiment uses two wavelengths of ultraviolet light, one at around 184.9 nm and the other at around 253.7 nm.
Abstract:
A slider is used in an actuation system and carries a transducing head for transducing data to and from a rotatable recording disc. The slider includes a slider body having a leading edge and a trailing edge and a transducing head positioned proximate the trailing edge of the slider body. An encapsulant comprised of a self assembled monolayer covers exposed surfaces the slider body.