Abstract:
A portable device and associated method are described for use with a system in which a locating signal is transmitted from within the ground during an operational procedure. The locating signal includes a transmission frequency that is selectable from a group of discrete transmission frequencies in a frequency range and the region includes electromagnetic noise that can vary. The portable device includes a receiver having a bandwidth that includes the transmission frequency range and is operable for measuring the electromagnetic noise in the transmission frequency range to establish a frequency content of the electromagnetic noise for use in selecting one of the discrete transmission frequencies that is subsequently transmitted as the locating signal during the operational procedure. The locating signal can be transmitted from a boring tool, a pullback arrangement or an inground cable. A predicted maximum operational depth for a transmitter can be determined prior to the operational procedure.
Abstract:
A drill string communication system is described. An uphole transceiver can couple a signal onto the drill string at a power that is always greater that a selectable power for a downhole signal. Communication from a drill rig to an inground tool can be re-initiated using a maximum uphole transmit power of an uphole transceiver. A procedure can establish a new set of transmission parameters for a drill string signal to establish communication between the drill rig and the inground tool. The system can include a walkover locator that receives an active/inactive status-controlled electromagnetic locating signal. Responsive to a locating signal degradation, a reconfiguration command can modify the locating signal. The uphole transceiver and a downhole transceiver can automatically modify at least one parameter of a downhole signal. An uphole receiver can apply a compensation response to a transferred signal to compensate for a drill string channel transfer function.
Abstract:
A transmitter is carried proximate to an inground tool for sensing a plurality of operational parameters relating to the inground tool. The transmitter customizes a data signal to characterize one or more of the operational parameters for transmission from the inground tool based on the operational status of the inground tool. A receiver receives the data signal and recovers the operational parameters. Advanced data protocols are described. Pitch averaging and enhancement of dynamic pitch range for accelerometer readings are described based on monitoring mechanical shock and vibration of the inground tool.
Abstract:
A portable device and associated method are described for use with a system in which a locating signal is transmitted from within the ground during an operational procedure. The locating signal includes a transmission frequency that is selectable from a group of discrete transmission frequencies in a frequency range and the region includes electromagnetic noise that can vary. The portable device includes a receiver having a bandwidth that includes the transmission frequency range and is operable for measuring the electromagnetic noise in the transmission frequency range to establish a frequency content of the electromagnetic noise for use in selecting one of the discrete transmission frequencies that is subsequently transmitted as the locating signal during the operational procedure. The locating signal can be transmitted from a boring tool, a pullback arrangement or an inground cable. A predicted maximum operational depth for a transmitter can be determined prior to the operational procedure.
Abstract:
A portable device and associated method are described for use with a system in which a locating signal is transmitted from within the ground during an operational procedure. The locating signal includes a transmission frequency that is selectable from a group of discrete transmission frequencies in a frequency range and the region includes electromagnetic noise that can vary. The portable device includes a receiver having a bandwidth that includes the transmission frequency range and is operable for measuring the electromagnetic noise in the transmission frequency range to establish a frequency content of the electromagnetic noise for use in selecting one of the discrete transmission frequencies that is subsequently transmitted as the locating signal during the operational procedure. The locating signal can be transmitted from a boring tool, a pullback arrangement or an inground cable. A predicted maximum operational depth for a transmitter can be determined prior to the operational procedure.
Abstract:
A drill string communication system is described. An uphole transceiver can couple a signal onto the drill string at a power that is always greater that a selectable power for a downhole signal. Communication from a drill rig to an inground tool can be re-initiated using a maximum uphole transmit power of an uphole transceiver. A procedure can establish a new set of transmission parameters for a drill string signal to establish communication between the drill rig and the inground tool. The system can include a walkover locator that receives an active/inactive status-controlled electromagnetic locating signal. Responsive to a locating signal degradation, a reconfiguration command can modify the locating signal. The uphole transceiver and a downhole transceiver can automatically modify at least one parameter of a downhole signal. An uphole receiver can apply a compensation response to a transferred signal to compensate for a drill string channel transfer function.
Abstract:
A transmitter is carried proximate to an inground tool for sensing a plurality of operational parameters relating to the inground tool. The transmitter customizes a data signal to characterize one or more of the operational parameters for transmission from the inground tool based on the operational status of the inground tool. A receiver receives the data signal and recovers the operational parameters. Advanced data protocols are described. Pitch averaging and enhancement of dynamic pitch range for accelerometer readings are described based on monitoring mechanical shock and vibration of the inground tool.
Abstract:
A drill string communication system is described. An uphole transceiver can couple a signal onto the drill string at a power that is always greater that a selectable power for a downhole signal. Communication from a drill rig to an inground tool can be re-initiated using a maximum uphole transmit power of an uphole transceiver. A procedure can establish a new set of transmission parameters for a drill string signal to establish communication between the drill rig and the inground tool. The system can include a walkover locator that receives an active/inactive status-controlled electromagnetic locating signal. Responsive to a locating signal degradation, a reconfiguration command can modify the locating signal. The uphole transceiver and a downhole transceiver can automatically modify at least one parameter of a downhole signal. An uphole receiver can apply a compensation response to a transferred signal to compensate for a drill string channel transfer function.
Abstract:
A drill string communication system is described. An uphole transceiver can couple a signal onto the drill string at a power that is always greater that a selectable power for a downhole signal. Communication from a drill rig to an inground tool can be re-initiated using a maximum uphole transmit power of an uphole transceiver. A procedure can establish a new set of transmission parameters for a drill string signal to establish communication between the drill rig and the inground tool. The system can include a walkover locator that receives an active/inactive status-controlled electromagnetic locating signal. Responsive to a locating signal degradation, a reconfiguration command can modify the locating signal. The uphole transceiver and a downhole transceiver can automatically modify at least one parameter of a downhole signal. An uphole receiver can apply a compensation response to a transferred signal to compensate for a drill string channel transfer function.
Abstract:
A transmitter is carried proximate to an inground tool for sensing a plurality of operational parameters relating to the inground tool. The transmitter customizes a data signal to characterize one or more of the operational parameters for transmission from the inground tool based on the operational status of the inground tool. A receiver receives the data signal and recovers the operational parameters. Advanced data protocols are described. Pitch averaging and enhancement of dynamic pitch range for accelerometer readings are described based on monitoring mechanical shock and vibration of the inground tool.