Abstract:
An instrument for measuring the size and characteristics of a particle contained in a sample of particles. A particle sample is introduced into a sample chamber. The sample particles are subjected to centrifugal forces so that large particles travel in the sample chamber at velocities greater than small particles. Light is shown upon the particles as they travel in the sample chamber. The particles diffract the light. The diffracted light is then received by detectors that convert the diffracted light into corresponding electronic signals. The electronic signals are analyzed to determine the size and characteristics of the particles that caused the diffracted light.
Abstract:
An instrument for measuring the size and characteristics of a particle contained in a sample of particles. A particle sample is introduced into a sample chamber. The sample particles are subjected to centrifugal forces so that large particles travel in the sample chamber at velocities greater than small particles. Light is shown upon the particles as they travel in the sample chamber. The particles diffract the light. The diffracted light is then received by detectors that convert the diffracted light into corresponding electronic signals. The electronic signals are analyzed to determine the size and characteristics of the particles that caused the diffracted light.
Abstract:
The present invention comprises methods and apparatus utilizing multiple detectors to measure properties related to light scattered by particles. Characteristics of particles are determined from the measured properties.
Abstract:
An instrument for measuring characteristics of particles. A particle sample is introduced into a sample cell. The sample particles are subjected to gravitational or centrifugal forces wherein particle motion is dependent upon particle characteristics. The particles are illuminated by an illumination device to produce light scattered by the particles. The light is detected by at least one detector. Characteristics of the particles are determined from the detector signals.
Abstract:
Apparatus and methods are described for determining information about at least one particle by measuring light scattered from the particles. Scattered light is detected from a region of a particle dispersion or from a larger region in a generally collimated illumination beam. Scattered light is also detected from a plurality of regions for improvement of repeatability.
Abstract:
An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range. If all of the particles pass through a single beam, then many small particles must be counted for each large one because typical distributions are uniform on a particle volume basis, and the number distribution is related to the volume distribution by the particle diameter cubed.
Abstract:
An instrument for measuring the size distribution of a particle sample by counting and classifying particles into selected size ranges. The particle concentration is reduced to the level where the probability of measuring scattering from multiple particles at one time is reduced to an acceptable level. A light beam is focused or collimated through a sample cell, through which the particles flow. As each particle passes through the beam, it scatters, absorbs, and transmits different amounts of the light, depending upon the particle size. So both the decrease in the beam intensity, due to light removal by the particle, and increase of light, scattered by the particle, may be used to determine the particle size, to classify the particle and count it in a certain size range. If all of the particles pass through a single beam, then many small particles must be counted for each large one because typical distributions are uniform on a particle volume basis, and the number distribution is related to the volume distribution by the particle diameter cubed.
Abstract:
An instrument for measuring characteristics of particles. A particle sample is introduced into a sample cell. The sample particles are subjected to gravitational or centrifugal forces wherein particle motion is dependent upon particle characteristics. The particles are illuminated by an illumination device to produce light scattered by the particles. The light is detected by at least one detector. Characteristics of the particles are determined from the detector signals.
Abstract:
The present invention comprises methods and apparatus for measuring light scattering from particles and images of particles, and for combining size distributions from the measurements to produce a single size distribution over a larger size range.
Abstract:
The present invention comprises methods and apparatus for measuring light scattering from particles and images of particles, and for combining size distributions from the measurements to produce a single size distribution over a larger size range.