Abstract:
A method is provided for use in analyzing seeds, in a population of seeds, for one or more desired characteristic. The method includes removing tissue from individual seeds in a population of seeds using an automated seed sampler, while preserving germination viability of the seeds, and analyzing the tissue for the presence or absence of one or more desired characteristic. The method then includes, based on the analysis of the tissue, quantifying the one or more desired characteristic for each of the individual seeds that possess the one or more desired characteristic.
Abstract:
A seed sampling system is provided having an automated seed loading assembly including a seed bin and being operable to singulate seeds from a plurality of seeds within the seed bin. The system also includes an automated seed sampling assembly operable to remove tissue samples from the singulated seeds, and an automated seed transport assembly operable to transfer the singulated seeds from the seed loading assembly to the seed sampling assembly. The seed transport assembly includes multiple retention members. Each of the retention members is movable relative to the seed loading assembly and to the seed sampling assembly. The seed transport assembly is operable to position one of the multiple retention members adjacent to the seed loading assembly for engaging one of the singulated seeds, while positioning another of the retention members adjacent to the seed sampling assembly for presenting another of the singulated seeds to the seed sampling assembly.
Abstract:
The present invention relates to the field of plant breeding. More specifically, the present invention includes a method of using haploid plants for genetic mapping of traits of interest such as disease resistance. Further, the invention includes a method for breeding corn plants containing quantitative trait loci (QTL) that are associated with resistance to Goss' Wilt, a bacterial disease associated with Clavibacter michiganense spp.
Abstract:
The present invention relates to the field of plant breeding. More specifically, the present invention includes a method of using haploid plants for genetic mapping of traits of interest such as disease resistance. Further, the invention includes a method for breeding corn plants containing quantitative trait loci (QTL) that are associated with resistance to Goss' Wilt, a bacterial disease associated with Clavibacter michiganense spp.
Abstract:
Novel methods are provided to facilitate germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds. A method for introgressive hybridization, for example, generally includes removing tissue samples from individual seeds using an automated seed sampler without affecting germination viability of the seeds, and analyzing nucleic acids extracted from the tissue samples for at least one genetic marker. The method then further includes selecting the sampled seeds that possess the at least one genetic marker, cultivating fertile plants from the selected seeds, and crossing the fertile plants with other plants.
Abstract:
The present invention relates to the field of plant breeding. More specifically, the present invention includes a method of using haploid plants for genetic mapping of traits of interest such as disease resistance. Further, the invention includes a method for breeding corn plants containing quantitative trait loci (QTL) that are associated with resistance to Goss' Wilt, a bacterial disease associated with Clavibacter michiganense spp.
Abstract:
The present invention relates to the field of plant breeding. More specifically, the present invention includes a method of using haploid plants for genetic mapping of traits of interest such as disease resistance. Further, the invention includes a method for breeding corn plants containing quantitative trait loci (QTL) that are associated with resistance to Gray Leaf Spot, a fungal disease associated with Cercospora spp.
Abstract:
A seed sampling system is provided having an automated seed loading assembly including a seed bin and being operable to singulate seeds from a plurality of seeds within the seed bin. The system also includes an automated seed sampling assembly operable to remove tissue samples from the singulated seeds, and an automated seed transport assembly operable to transfer the singulated seeds from the seed loading assembly to the seed sampling assembly. The seed transport assembly includes multiple retention members. Each of the retention members is movable relative to the seed loading assembly and to the seed sampling assembly. The seed transport assembly is operable to position one of the multiple retention members adjacent to the seed loading assembly for engaging one of the singulated seeds, while positioning another of the retention members adjacent to the seed sampling assembly for presenting another of the singulated seeds to the seed sampling assembly.
Abstract:
The present invention provides breeding methods and compositions to enhance the germplasm of a plant. The methods describe the identification and accumulation of transgenes and favorable haplotype genomic regions in the germplasm of a breeding population of crop plants.
Abstract:
The present invention relates to the field of plant breeding. More specifically, the present invention includes a method of using haploid plants for genetic mapping of traits of interest such as disease resistance. Further, the invention includes a method for breeding corn plants containing quantitative trait loci (QTL) that are associated with resistance to Gray Leaf Spot, a fungal disease associated with Cercospora spp.