Abstract:
To prevent image retention, the pixel circuit includes: a light emitting element; a driving transistor which supplies an electric current according to an applied voltage to the light emitting element; a capacitor part which holds the voltage containing a threshold voltage and a data voltage of the driving transistor; and a switch part which has the voltage containing the threshold voltage and the data voltage held to the capacitor part and applies the voltage to the driving transistor. Further, the switch part has a function which applies a constant voltage to the driving transistor before having the voltage containing the threshold voltage and the data voltage held to the capacitor part.
Abstract:
Provided is a shift register circuit including a single conductive transistor which performs overlap scanning without increasing the number of clock signals and reduces power consumption by avoiding an ineffective through current, a gate driver, and a display apparatus. The shift register circuit includes: a shift register unit having a first output transistor which connects an output terminal and a first power supply; and a first gate control circuit of which an output terminal is connected to a gate terminal of the first output transistor, wherein the first gate control circuit includes a timing generation unit and a buffer unit, the buffer unit is a bootstrap circuit, and an output of the timing generation unit to which an input signal is inputted is used as an input of the buffer unit and an output of the buffer unit is used as an output of the first gate control circuit.
Abstract:
Provided is an OLED display device preventing an occurrence of a crosstalk using a simple structure.A display device includes: a display unit that includes a plurality of pixel circuits each including an organic light emitting element; a control unit that applies electric potential to the pixel circuits for a first period, and that controls emission luminance of the organic light emitting elements for a second period after the first period; and an application unit that applies a voltage of less than or equal to a threshold voltage of the organic light emitting element before a start of the second period in which the organic light emitting element has internal capacitance to maintain an electric potential difference between the anode electrode and the cathode electrode for a vertical scanning period in which a displayed image to be refreshed when the control unit controls the organic light emitting element not to emit light.
Abstract:
A display apparatus includes: a light emitting device in which a first electrode, a light emitting layer, and a second electrode are laminated; a pixel circuit, which is arranged on a lower side of the light emitting device, having a drive transistor including a source electrode connected to the first electrode and controlling a current supplied to the light emitting device; a first metal plate and a second metal plate arranged to face the light emitting layer across the first electrode; and a first insulating layer arranged between the first electrode and both the first metal plate and the second metal plate. The first metal plate is connected to a gate electrode of the drive transistor, the second metal plate is connected to a first voltage line, and the first metal plate and the second metal plate are arranged on the same plane face.
Abstract:
To prevent image retention, the pixel circuit includes: a light emitting element; a driving transistor which supplies an electric current according to an applied voltage to the light emitting element; a capacitor part which holds the voltage containing a threshold voltage and a data voltage of the driving transistor; and a switch part which has the voltage containing the threshold voltage and the data voltage held to the capacitor part and applies the voltage to the driving transistor. Further, the switch part has a function which applies a constant voltage to the driving transistor before having the voltage containing the threshold voltage and the data voltage held to the capacitor part.
Abstract:
A touch sensor device includes: an impedance surface where plural sets of reference coordinates are set at plural locations; plural detection electrodes arranged on the impedance surface; a detection circuit configured to detect electric currents passing the detection electrodes; a storage section storing reference standardized values and reference normalized values; a position coordinate calculation section configured to obtain standardized values calculated by standardizing the electric currents detected in each detection period and to map the standardized values onto position coordinates; a first normalized value calculation section configured to map the position coordinates onto first normalized values; a second normalized value calculation section configured to calculate second normalized values by normalizing the electric currents in each detection period; and a touch gesture detection section configured to detect a motion of pointers on the basis of a time variation of the first normalized values and the second normalized values.
Abstract:
In a pixel array in which rectangular pixels, each enclosing a subpixel of the first color (SP1) which has the highest luminosity factor, a subpixel of the second color (SP2) and a subpixel of the third color (SP3) which has the lowest luminosity factor, are two-dimensionally arranged, SP2 includes first and second portions respectively near two corners adjacent to each other in the first direction of the pixel, SP3 includes first and second portions near other two corners adjacent each other in the first direction of the rectangular pixel, and SP1 is located at a middle part including a center of gravity of the rectangular pixel. SP3 has a larger area than each of SP1 and SP2. In the second direction orthogonal to the first direction, SP2 and SP3 are widest near a pixel boundary in the first direction, SP1 is widest near the center of gravity in the pixel.
Abstract:
Provided is a color filter substrate including: an end portion unit pixel including a plurality of kinds of end portion sub-pixels which correspond to a plurality of kinds of primary colors respectively in a one-to-one relationship; and an inner unit pixel including a plurality of kinds of inner sub-pixels which correspond to the plurality of kinds of primary colors respectively in a one-to-one relationship, wherein a relative area proportion of the end portion sub-pixels is set equal to that of the inner sub-pixels; and wherein the plurality of kinds of the end portion sub-pixels is arrayed in accordance with a position or a shape on an outer edge of the display region, an array direction of the plurality of kinds of the end portion sub-pixels and an array direction of the plurality of kinds of the inner sub-pixels configured to intersect each other.
Abstract:
An object is to provide a display device of an organic light emitting type suppressing luminance unevenness. The display device includes: a pixel including an organic light emitting element and a pixel circuit that controls a current supplied to the organic light emitting element; a first wiring 41 and a second wiring 42 supplying a first signal used for controlling the pixel circuit to the pixel circuit; and a third wiring 43 suppling a second signal used for controlling the pixel circuit to the pixel circuit. The first wiring 41 to the third wiring 43 are arranged inside an area in which the pixel circuit is arranged in a first direction, and the third wiring 43 is arranged between the first wiring 41 and the second wiring 42.
Abstract:
To achieve a pixel circuit and the like capable of improving the accuracy for detecting the threshold voltage. The pixel circuit includes: a light emitting element; a driving transistor which supplies an electric current to the light emitting element according to an applied voltage; a capacitor part which holds a voltage containing a threshold voltage and a data voltage of the driving transistor and applies the voltage to the driving transistor; and a switch part which makes the capacitor part hold the voltage containing the threshold voltage and the data voltage. The switch part includes a reference voltage transistor which inputs a reference voltage from a reference voltage power supply line and a data voltage transistor which inputs a data voltage from a data line.