Graphene-based elastic heat spreader films

    公开(公告)号:US11946704B2

    公开(公告)日:2024-04-02

    申请号:US16559000

    申请日:2019-09-03

    CPC classification number: F28F21/02 B82Y30/00 Y10T428/30

    Abstract: Provided is a elastic heat spreader film comprising: (a) an elastomer or rubber as a binder material or a matrix material; and (b) multiple graphene sheets that are bonded by the binder material or dispersed in the matrix material, wherein the multiple graphene sheets are substantially aligned to be parallel to one another and wherein the elastomer or rubber is in an amount from 0.001% to 20% by weight based on the total heat spreader film weight; wherein the multiple graphene sheets contain single-layer or few-layer graphene sheets selected from pristine graphene, graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof; and wherein the elastic heat spreader film has a fully recoverable tensile elastic strain from 2% to 100% and an in-plane thermal conductivity from 200 W/mK to 1,750 W/mK.

    Lithium metal secondary battery containing an elastic anode-protecting layer

    公开(公告)号:US11276852B2

    公开(公告)日:2022-03-15

    申请号:US16166536

    申请日:2018-10-22

    Inventor: Bor Z. Jang

    Abstract: Provided is a lithium metal secondary battery comprising a cathode, an anode, and a non-solid state electrolyte without a porous separator disposed between the cathode and the anode, wherein the anode comprises: (a) an anode active material layer containing a layer of lithium or lithium alloy, in a form of a foil, coating, or multiple particles aggregated together, as an anode active material; and (b) an anode-protecting layer in physical contact with the anode active material layer, having a thickness from 1 nm to 100 μm and comprising an elastomer having a fully recoverable tensile elastic strain from 2% to 1,000% and a lithium ion conductivity from 10−8 S/cm to 5×10−2 S/cm when measure at room temperature; wherein the lithium metal secondary battery does not include a lithium-sulfur battery or a lithium-selenium battery.

    Production of graphitic films directly from highly aromatic molecules

    公开(公告)号:US11267711B2

    公开(公告)日:2022-03-08

    申请号:US16361748

    申请日:2019-03-22

    Abstract: Provided is a method of producing a graphitic film, comprising: (a) providing a suspension of aromatic molecules selected from petroleum heavy oil or pitch, coal tar pitch, a polynuclear hydrocarbon, a halogenated variant thereof, or a combination thereof, dispersed or dissolved in a liquid medium; (b) dispensing and depositing the suspension onto a surface of a supporting substrate to form a wet layer of aromatic molecules, wherein the procedure includes subjecting the suspension to an orientation-inducing stress or strain; (c) partially or completely removing the liquid medium; and (d) heat treating the resulting dried layer at a first temperature selected from 25° C. to 3,200° C. so that the aromatic molecules are merged or fused into larger aromatic molecules to form the graphitic film having graphene domains or graphite crystals, wherein the larger aromatic molecules or graphene planes in the graphene domains or graphite crystals are substantially parallel to each other.

    Partially and fully surface-enabled metal ion-exchanging energy storage devices

    公开(公告)号:US11038205B2

    公开(公告)日:2021-06-15

    申请号:US15648016

    申请日:2017-07-12

    Abstract: A surface-enabled, metal ion-exchanging battery device comprising a cathode, an anode, a porous separator, and a metal ion-containing electrolyte, wherein the metal ion is selected from aluminum (Al), gallium (Ga), indium (In), tin (Sn), lead (Pb), or bismuth (Bi), and at least one of the electrodes contains therein a metal ion source prior to the first charge or discharge cycle of the device and at least the cathode comprises a functional material or nano-structured material having a metal ion-capturing functional group or metal ion-storing surface in direct contact with the electrolyte. This energy storage device has a power density significantly higher than that of a lithium-ion battery and an energy density dramatically higher than that of a supercapacitor.

Patent Agency Ranking