Abstract:
A proximity sensor including a structure suspending at least one lens above a circuit board, light emitters operable to project light beams through the lens along a common projection plane, light detectors operable to detect amounts of light arriving through the lens at the detector, wherein an object in the projection plane reflects light from an emitter to one or more of the detectors, and wherein each emitter-detector pair, including one of the emitters and one of the detectors, when synchronously activated, is expected to generate a greater detection signal at the activated detector than the other detectors, were they to be synchronously activated with any of the emitters, when the object is located at a specific 2D location in the projection plane corresponding to the emitter-detector pair, and a processor identifying gestures performed by the object based on amounts of light detected by the detector of each emitter-detector pair.
Abstract:
A proximity sensor, including light emitters and light detectors mounted on a circuit board, two stacked lenses, positioned above the emitters and the detectors, including an extruded cylindrical lens and a Fresnel lens array, wherein each emitter projects light through the two lenses along a common projection plane, wherein a reflective object located in the projection plane reflects light from one or more emitters to one or more detectors, and wherein each emitter-detector pair, when synchronously activated, generates a greatest detection signal at the activated detector when the reflective object is located at a specific 2D location in the projection plane corresponding to the emitter-detector pair, and a processor sequentially activating the emitters and synchronously co-activating one or more detectors, and identifying a location of the object in the projection plane, based on amounts of light detected by the detector of each synchronously activated emitter-detector pair.
Abstract:
An optical method for identifying locations of objects in a plane, including serially projecting light beams along a detection area, from a plurality of locations along an edge of the detection area, whereby a reflective object inserted into the detection area reflects the projected light beams, directing the reflections of the projected light beams arriving at the edge of the detection area onto a plurality of light detectors, in a manner that maximizes amounts of reflected light arriving at the detectors when the light arrives at a particular angle in relation to the edge, and calculating two-dimensional coordinates of the inserted object in the detection area based on the particular angle and the outputs of the detectors.
Abstract:
A proximity sensor, including a housing, an array of lenses mounted in the housing, an array of alternating light emitters and light detectors mounted in the housing, each detector being positioned along the image plane of a respective one of the lenses so as to receive maximum light intensity when light enters the lens at a particular angle, an activating unit mounted in the housing and connected to the emitters and detectors, synchronously co-activating each emitter with at least one of the detectors, each activated emitter projecting light out of the housing along a detection plane, and a processor receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection plane to the detectors, and calculating a two-dimensional location of the object in the detection plane based on the detector outputs and the particular angle.
Abstract:
A non-transitory computer readable medium storing instructions which, when executed by a processor of an electronic device that includes a touch sensitive and pressure sensitive display, cause the processor to enable a user interface of the electronic device, by which a glide gesture along the display and an amount of pressure applied to the display both generate the same user interface command.
Abstract:
A light-based touch-sensitive surface, including a housing, a surface attached to the housing for receiving touch input, a plurality of light sources in the housing for emitting light that crosses the surface, a plurality of light receivers in the housing for detecting the light emitted by the light sources, a curved lens adjacent to the surface through which the light emitted by the light sources passes, including two substantially similarly curved exterior panels, one of which forms a curved rim for the surface, and a calculating unit in said housing, connected to the light receivers, for calculating a touch location based on an absence of light expected to be received by the receivers.
Abstract:
A sensor, including light emitters projecting directed light beams, light detectors interleaved with the light emitters, lenses, each lens oriented relative to a respective one of the light detectors such that the light detector receives maximum intensity when light enters the lens at an angle b, whereby, for each emitter E, there exist corresponding target positions p(E, D) along the path of the light from emitter E, at which an object located at any of the target positions reflects the light projected by emitter E towards a respective one of detectors D at angle b, and a processor storing a reflection value R(E, D) for each co-activated emitter-detector pair (E, D), based on an amount of light reflected by an object located at p(E, D) and detected by detector D, and calculating a location of an object based on the reflection values and target positions.
Abstract:
A proximity sensor, including a housing, an array of lenses mounted in the housing, an array of alternating light emitters and light detectors mounted in the housing, each detector being positioned along the image plane of a respective one of the lenses so as to receive maximum light intensity when light enters the lens at a particular angle, an activating unit mounted in the housing and connected to the emitters and detectors, synchronously co-activating each emitter with at least one of the detectors, each activated emitter projecting light out of the housing along a detection plane, and a processor receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection plane to the detectors, and calculating a two-dimensional location of the object in the detection plane based on the detector outputs and the particular angle.
Abstract:
A system including two handheld electronic devices, each device including a housing, a communicator mounted in the housing continuously receiving images from an internet server, a display mounted in the housing, and a sensor mounted in the housing and connected to the communicator, configured to detect sizes of objects in an adjacent detection zone, and including an analyzer recognizing the other handheld electronic device when the sensor detects that an object in the adjacent detection zone is as long as an edge of the housing, wherein the server receives outputs from the analyzer and partitions each of the images into two half-images, and continuously transmits one of each half-image to the handheld electronic device and the other of each half-image to the other handheld device, such that each full image spans the two device displays.
Abstract:
A method for use by a touch screen in which light transmitted inside the screen is scattered by an object touching the screen from outside the screen, the method including activating emitter-receiver pairs for a plurality of emitters and receivers while an object is touching a screen from outside the screen, wherein light emitted by each emitter is transmitted inside the screen, wherein each emitter is associated with a limited number of receivers that detect significant light from such emitter while no object is touching the screen, and wherein the activated emitter-receiver pairs include pairs for which the receiver is not associated with the emitter in the pair, determining that receivers not associated with emitters detect significant light due to the object scattering the light emitted by the emitters, and deriving the location where the object is touching the screen from the determining.