Abstract:
An adjustable mirror, including a mirror within a fixed housing, whereby at least one angle of the mirror relative to the housing is adjustable, electrical equipment within the housing and attached to the rear of the mirror, operative to adjust the at least one angle of the mirror, a rounded surface projecting toward an operator of the mirror, and a sensor, connected to the electrical equipment, operative to detect the operator's hand following the rounded surface, and to instruct the electrical equipment to adjust the at least one angle of the mirror in response to the detection.
Abstract:
A steering wheel that identifies gestures performed on its surface, including a circular gripping element including a thumb-receiving notch disposed along its circumference, an array of light-based proximity sensors, mounted in the gripping element, that projects light beams through the notch radially outward from the gripping element, and detects light beams reflected back into the gripping element by a moving object at or near the notch, and a processor, coupled with the proximity sensor array, for determining polar angles along the circumference of the gripping element occupied by the object, responsive to light beams projected by the proximity sensor array and reflected back by the object being detected by the proximity sensor array.
Abstract:
A proximity sensor, including a housing, an array of lenses mounted in the housing, an array of alternating light emitters and light detectors mounted in the housing, each detector being positioned along the image plane of a respective one of the lenses so as to receive maximum light intensity when light enters the lens at a particular angle, an activating unit mounted in the housing and connected to the emitters and detectors, synchronously co-activating each emitter with at least one of the detectors, each activated emitter projecting light out of the housing along a detection plane, and a processor receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection plane to the detectors, and calculating a two-dimensional location of the object in the detection plane based on the detector outputs and the particular angle.
Abstract:
A user interface for a vehicle, including a steering wheel for the vehicle, including a grip, a sensor operable to detect objects at a plurality of locations along the grip, and an illuminator operable to illuminate different portions of the grip, a processor in communication with the sensor, with the illuminator and with a controller of vehicle functions, and a non-transitory computer readable medium storing instructions which cause the processor: to identify, via the sensor, a location of a first object along the grip, to illuminate, via the illuminator, a portion of the grip, adjacent to the identified location, to further identify, via the sensor, a second object being at the illuminated portion of the grip, and to activate, via the controller, a vehicle function in response to the second object identified as being at the illuminated portion of the grip.
Abstract:
A steering wheel for a vehicle, including front and back semi-toroidal surfaces joined at their outer circumferences by a light guide in the shape of a circular rim, and enclosing a toroidal volume having a cavity therein, a PCB mounted in the cavity, an alternating array of invisible-light emitters and receivers mounted on the PCB, such that the light guide projects invisible-light beams emitted by the emitters radially outward of the steering wheel, and directs reflections of the projected light beams off of a driver's hands radially inward to the steering wheel toward the receivers, and a processor connected to equipment mounted away from the steering wheel, the processor synchronously activating each emitter with a respective neighboring receiver, identifying a driver's hand gestures along an arc of the light guide based on reflected light detected by the receivers, and controlling the equipment in response to the thus-identified hand gestures.
Abstract:
A vehicle user interface including a vehicle steering wheel including a grip, a sensor mounted in the steering wheel grip detecting objects touching the steering wheel grip, a plurality of individually activatable illumination units illuminating respective locations on the steering wheel grip, and a processor receiving outputs from the sensor, selectively activating a subset of the illumination units adjacent to a detected object, and controlling a plurality of vehicle functions in response to outputs of the sensor.
Abstract:
A steering wheel for a vehicle, including front and back semi-toroidal surfaces joined at their outer circumferences by a light guide in the shape of a circular rim, and enclosing a toroidal volume having a cavity therein, a PCB mounted in the cavity, an alternating array of invisible-light emitters and receivers mounted on the PCB, such that the light guide projects invisible-light beams emitted by the emitters radially outward of the steering wheel, and directs reflections of the projected light beams off of a driver's hands radially inward to the steering wheel toward the receivers, and a processor connected to equipment mounted away from the steering wheel, the processor synchronously activating each emitter with a respective neighboring receiver, identifying a driver's hand gestures along an arc of the light guide based on reflected light detected by the receivers, and controlling the equipment in response to the thus-identified hand gestures.
Abstract:
A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
Abstract:
A proximity sensor including a housing, a plurality of light pulse emitters for projecting light out of the housing along a detection plane, a plurality of primary light detectors for detecting reflections of the light projected by the emitters, by a reflective object in the detection plane, a plurality of primary lenses oriented relative to the emitters and primary detectors in such a manner that for each emitter-detector pair, light emitted by the emitter of that pair passes through one of the primary lenses and is reflected by the object back through one of the primary lenses to the detector of that pair when the object is located at a position, from among a primary set of positions in the detection plane, that position being associated with that emitter-detector pair, and a processor for co-activating emitter-detector pairs, and configured to calculate a location of the object in the detection plane.
Abstract:
A steering wheel that identifies gestures performed on its surface, including a circular gripping element including a thumb-receiving notch disposed along its circumference, an array of light-based proximity sensors, mounted in the gripping element, that projects light beams through the notch radially outward from the gripping element, and detects light beams reflected back into the gripping element by a moving object at or near the notch, and a processor, coupled with the proximity sensor array, for determining polar angles along the circumference of the gripping element occupied by the object, responsive to light beams projected by the proximity sensor array and reflected back by the object being detected by the proximity sensor array.