Abstract:
Methods and systems for a storage environment are provided. For example, one method includes receiving a request from a storage server at an offload engine for reconstructing data lost due to a failed storage device of a parity group having a plurality of storage devices; retrieving data and parity by the offload engine from the parity group storage devices that are operational; determining by the offload engine XOR of the retrieved data and parity; presenting XOR of data and parity by the offload engine to the storage server with context information associated with the retrieved data; and reconstructing lost data by the storage server using the XOR of data and parity and the context information provided by the offload engine.
Abstract:
A method, non-transitory computer readable medium, and device that assists with reducing memory fragmentation in solid state devices includes identifying an allocation area within an address range to write data from a cache. Next, the identified allocation area is determined for including previously stored data. The previously stored data is read from the identified allocation area when it is determined that the identified allocation area comprises previously stored data. Next, both the write data from the cache and the read previously stored data are written back into the identified allocation area sequentially through the address range.
Abstract:
Methods and systems for a storage environment are provided. For example, one method includes receiving a request from a storage server at an offload engine for reconstructing data lost due to a failed storage device of a parity group having a plurality of storage devices; retrieving data and parity by the offload engine from the parity group storage devices that are operational; determining by the offload engine XOR of the retrieved data and parity; presenting XOR of data and parity by the offload engine to the storage server with context information associated with the retrieved data; and reconstructing lost data by the storage server using the XOR of data and parity and the context information provided by the offload engine.
Abstract:
Presented herein are methods, non-transitory computer readable media, and devices for maximizing parallelization in a parity de-clustered and sliced disk RAID architecture implemented on at least one hard disk drive by creating at least one allocation group, each created allocation group comprising at least one parity group within a sliced disk group, selecting one of said at least one allocation group, and performing at least one of write or read concurrently on all parity groups within the selected allocation group.
Abstract:
The disclosed embodiments relate to systems and methods for coordinating management of a shared disk storage between nodes. Particularly, a messaging protocol may be used to communicate notifications regarding each node's perception of the shared storage's state. The nodes may use the messaging protocol to achieve consensus when recovering from a storage device failure. Some embodiments provide for recovery when localized failures, such as failures at an adapter on a node, occur.
Abstract:
The present invention provides a system and method for virtual block numbers (VBNs) to disk block number (DBN) mapping that may be utilized for both single and/or multiple parity based redundancy systems. Following parity redistribution, new VBNs are assigned to disk blocks in the newly added disk and disk blocks previously occupied by parity may be moved to the new disk.
Abstract:
Some aspects of the disclosure relate to a data storage system that includes multiple memory device storage devices. If a memory device of a memory device array fails within a first data storage device, some portions of the lost or corrupted data from the failed memory device are recovered by reading them from a second data storage device. Other portions of the lost or corrupted data from the failed memory device are recovered from parity information in the first data storage device.
Abstract:
A method, non-transitory computer readable medium, and device that assists with reducing memory fragmentation in solid state devices includes identifying an allocation area within an address range to write data from a cache. Next, the identified allocation area is determined for including previously stored data. The previously stored data is read from the identified allocation area when it is determined that the identified allocation area comprises previously stored data. Next, both the write data from the cache and the read previously stored data are written back into the identified allocation area sequentially through the address range.
Abstract:
A method, non-transitory computer readable medium, and device that assists with reducing memory fragmentation in solid state devices includes identifying an allocation area within an address range to write data from a cache. Next, the identified allocation area is determined for including previously stored data. The previously stored data is read from the identified allocation area when it is determined that the identified allocation area comprises previously stored data. Next, both the write data from the cache and the read previously stored data are written back into the identified allocation area sequentially through the address range.
Abstract:
The disclosed embodiments relate to systems and methods for coordinating management of a shared disk storage between nodes. Particularly, a messaging protocol may be used to communicate notifications regarding each node's perception of the shared storage's state. The nodes may use the messaging protocol to achieve consensus when recovering from a storage device failure. Some embodiments provide for recovery when localized failures, such as failures at an adapter on a node, occur.