Abstract:
A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
Abstract:
A blood coagulation analyzer and analyzing method perform following: (a) preparing a measurement specimen by dispensing a blood specimen and a reagent into a reaction container; (b) emitting light of a plurality of wavelengths to the measurement specimen in the reaction container, the wavelengths comprising a first wavelength for use in a measurement by a blood coagulation time method, and at least one of a second wavelength for use in a measurement by a synthetic substrate method and a third wavelength for use in a measurement by an immunoturbidimetric method; (c) detecting light of a plurality of wavelengths corresponding to the light emitted in (b), from the measurement specimen, by a light receiving element, and acquiring data corresponding to each wavelength; and (d) conducting an analysis based on the data corresponding to one of the wavelengths among the acquired data, and acquiring a result of the analysis.
Abstract:
A sample analyzer is disclosed that comprising: a light source section for emitting light; a first optical information acquiring section for illuminating a sample with the light emitted by the light source section, and for acquiring first optical information; and a second optical information acquiring section for illuminating a measurement specimen, to be prepared by adding a reagent to the sample, with the light emitted by the light source section, and for and acquiring second optical information. A sample analyzing method, intended for use in an automated sample analyzer, is also described.
Abstract:
A sample analyzer is disclosed that comprising: a light source section for emitting light; a first optical information acquiring section for illuminating a sample with the light emitted by the light source section, and for acquiring first optical information; and a second optical information acquiring section for illuminating a measurement specimen, to be prepared by adding a reagent to the sample, with the light emitted by the light source section, and for and acquiring second optical information. A sample analyzing method, intended for use in an automated sample analyzer, is also described.
Abstract:
A novel method of specimen analysis in which prior to specimen analysis, any interfering substance can be measured. There is provided a method of specimen analysis, comprising the steps of irradiating a specimen with light to thereby obtain an optical information on the specimen from the specimen; mixing the specimen with a reagent to thereby obtain an analytical sample; and irradiating the analytical sample with light to thereby obtain an optical information on the sample from the analytical sample and processing the optical information on the sample to thereby accomplish analysis of the analytical sample. In the step of the analysis of the analytical sample, analytical conditions commensurate with the analytical sample are set on the basis of the optical information on the specimen.
Abstract:
A cuvette capable of suppressing the complication of the structure of each part of an analyzer and enabling the stirring of a specimen in a short time. The cuvette comprises: a first body part positioned on a bottom part side, having inner and outer surfaces of circular shape in horizontal cross section, and receiving a measuring beam; and a second body part positioned on an opening side, having an inner surface of non-circular shape in horizontal cross section and an outer surface of circular shape in horizontal cross section.
Abstract:
A sample analyzer includes (a) a measuring part for measuring optical information of a sample at first wavelength, second wavelength, and third wavelength, first light of the first wavelength and second light of the second wavelength being absorbed by a second substance but substantially not absorbed by a first substance, and third light of the third wavelength being absorbed by the first substance; and (b) an obtaining part for obtaining content of the first substance in the sample, and content of the second substance in the sample, influence by the second substance being excluded from the content of the first substance, based on the optical information at the first wavelength, second wavelength, and third wavelength measured by the measuring part.
Abstract:
A fundamental surface for a reflection surface of a reflection mirror of a vehicle lamp is formed in a manner such that a curved surface where an insertion hole, through which a light source is inserted into the reflection mirror in the direction oblique to the optical axis of the reflection mirror, is to be formed, is made smoothly continuous to the remaining curved surface without any level-difference. A group consisting of a number of paraboloids of revolution with different focal distances are put on the fundamental surface, and a group of closed curves formed as intersecting lines of the fundamental surface and the group of paraboloids of revolution are determined. A number of reflection steps in the form of loop are formed on the reflection surface. The reflection steps between the adjacent ones of the closed curves are defined by portions of the paraboloid of revolution between the adjacent ones.
Abstract:
A blood coagulation analyzer includes a detector and a controller. The detector includes a light source for emitting light to a prepared measurement sample and a light-receiving section for receiving light transmitted through the measurement sample. The controller is configured to performs operations comprising acquiring, based on the light detected by the detector, ratio information reflecting a ratio between a first value reflecting the intensity of the light transmitted through the measurement sample of a clotting reaction starting stage and a second value reflecting the intensity of the light transmitted through the measurement sample of a clotting reacting ending stage, and acquiring, based on the ratio information, a fibrinogen concentration in the blood sample.