Abstract:
Provided is a damper capable of damping a moving member which reciprocates along an axis, using a damping force having a hysteresis property. A damper includes a cylindrical housing into which a push rod is to be inserted in the direction of an axis thereof, and a damping mechanism placed in the housing and capable of damping the push rod by a damping force having a hysteresis property, wherein the damper is to be attached using a master cylinder mount space of a clutch pedal unit. In the damping mechanism of the damper, engagement between a helical cam groove formed in an inner wall of the housing and a guide protrusion formed on an outer circumference of a rotatable friction disk causes reciprocating linear motion of the push rod to be converted into rotating motion of the rotatable friction disk, and other friction disks, placed on both sides of the rotatable friction disk are pressed against respective sliding surfaces, of the rotating friction disk by an elastic force of a coil spring depending on an amount of displacement of the push rod.
Abstract:
Provided is a damper wherein viscous fluid which fills a circular cylinder chamber is more reliably prevented from leaking. A rotary damper (1) includes: a first seal ring (8a) of an elastic body, arranged between a through-hole (23) of a circular cylinder chamber (21) in a case (2) and a lower end of a rotor body of a rotor (3); and a second seal ring (8b) of an elastic body, arranged between a through-hole (60) in a lid (6) and an upper end of the rotor body. The first seal ring (8a) has: an outer peripheral surface with a width in a direction of a center axis of the circular cylinder chamber (21), which is pressed against an inner peripheral surface of the through-hole (23); and an inner peripheral surface with a width in the direction of the center axis of the circular cylinder chamber (21), which is pressed against an outer peripheral surface of the lower end of the rotor body, and also a second seal ring (8b) has: an outer peripheral surface with a width in the direction of the center axis of the circular cylinder chamber (21), which is pressed against an inner peripheral surface of the through-hole (60); and an inner peripheral surface with a width in the direction of the center axis of the circular cylinder chamber (21), which pressed against an outer peripheral surface of the upper end of the rotor body.
Abstract:
[Problem] To provide a rotary damper wherein damping torque generated by rotation can be easily adjusted using a simple configuration. [Solution] A rotary damper 1 limits the movement of viscous fluid contained in a circular cylinder chamber 111, thereby generating damping torque against applied rotational force. This rotary damper 1 is configured such that: a lid 15 is screwed into a case 11; and the gap g1 between the lower surface 153 of the lid 15 and the upper surface 119 of a partition section 115 and the gap g2 between the lower surface 153 of the lid 15 and the upper surface 129 of a vane 122 can be adjusted by adjusting the amount of screwing of the lid 15 into the case 11. This means that adjusting the amount of movement of viscous fluid through the gaps g1, g2 can adjust damping torque generated by rotation.
Abstract:
A thrust sliding bearing 1 includes: a synthetic resin-made upper casing 3 which has a vehicle body-side seat surface 10 for a mounting member 8 on a vehicle body side and an annular lower surface 2; a synthetic resin-made lower casing 5 on which an annular upper surface 4 opposed to the annular lower surface 2 and a spring seat surface 25 for a suspension coil spring 7 are integrally formed, and which is superposed on the upper casing 3 so as to be rotatable about an axis O of the upper casing 3 in an R direction; and a synthetic resin-made thrust sliding bearing piece 6 which is disposed in an annular gap 9 between the annular lower surface 2 and the annular upper surface 4, and has an annular thrust sliding bearing surface 51 which slidably abuts against at least one of the annular lower surface 2 and the annular upper surface 4.
Abstract:
A synthetic resin-made thrust sliding bearing 1 includes a synthetic resin-made upper casing 12, a synthetic resin-made lower casing 22, a synthetic resin-made thrust sliding bearing piece 33 interposed between the upper casing 12 and the lower casing 22, an outer elastic seal member 47 having an inner elastically deformable lip portion 43 and an outer elastically deformable lip portion 46, and an inner elastic seal member 54 having an outer elastically deformable lip portion 50 and an inner elastically deformable lip portion 53.
Abstract:
The present invention enables a simple structure to provide an easy adjustment of damping torque to be caused by applied rotation. The rotary damper (1) is intend to limit movement of viscous fluid filled in a circular cylindrical chamber (111), thereby generating a damping torque in response to an applied rotational force. The lid (15) is the screw-on type capable of being screwed into the casing (11), and thus adjusting a clearance gap G1 between the lid (15) and each partition (115) by way of changing the screwing amount of the lid (15) into the casing (11) allows amount of viscous fluid moving through the clearance gap G1 to be adjusted, thereby resulting in adjustment of a damping torque to be caused by rotation. In addition, each axial force generation member (17) includes a plastically or elastically deformable element and is located between the lid (15) and the corresponding partition (115) to apply a reaction force to the lid (15). This causes screwing the lid (15) into the casing (11) to generate an axial force, thereby preventing external-leakage of the viscous fluid via a threaded interface between the lid (15) and the casing (11), and allows the leeway for the adjustment of the clearance gap G1 to increase.
Abstract:
Provided is a rotary damper (1) suitable for use as a damper for a brake pedal with a fail-safe feature. In the rotary damper (1) intended for a brake pedal of an automobile and configured to generate a damping torque by rotation of a casing (11) in a forward direction N relative a rotor (12), the casing (11) is made of thermoplastic resin and is provided with a pair of arms (19a, 19b) projecting radially outward so as to hold a plate (5) therebetween. The plate (5) is configured to rotate about a pedal rotation center in conjunction with the brake pedal (4). Moreover, the arm (19a) out of the arms (19a, 19b), which is located downstream in the forward direction, includes a curved portion (191) with a constant width and a supporting portion (192) located more distal than the curved portion (191) is, and is configured to support the plate (5) with the supporting portion (192).
Abstract:
A thrust sliding bearing 1 includes a synthetic resin-made lower casing 2, a synthetic resin-made upper casing 3 superposed on the lower casing 2, and a synthetic resin-made thrust sliding bearing piece 4 interposed between said upper casing 3 and the lower casing 2.
Abstract:
A synthetic resin-made thrust sliding bearing includes a synthetic resin-made upper casing, a synthetic resin-made lower casing, and a synthetic resin-made thrust sliding bearing piece interposed between the upper casing and the lower casing.
Abstract:
A thrust sliding bearing includes an synthetic resin-made annular bearing body having an annular upper surface, an annular outer peripheral surface, and an annular lower surface; a synthetic resin-made annular bearing body having an annular lower surface; a sheet metal-made reinforcement member having an annular lower surface and an annular upper surface; a synthetic resin-made thrust sliding bearing piece interposed between the annular upper surface of the reinforcement member and the annular lower surface of the bearing body; and a synthetic resin-made radial sliding bearing piece disposed between an annular inner peripheral surface of a hollow cylindrical portion of the reinforcement member and an annular outer peripheral surface of a hollow cylindrical portion of the bearing body.