Abstract:
An assembly and a method is provided where the LED module includes a plurality of module units interconnected between common connection lines in a sequential order with increasing distances towards a connection terminal of the LED module. The circuit assembly includes an output terminal having a first output terminal portion and a second output terminal portion, a main power supply for supplying an operation voltage potential to a first output terminal portion, a control device for generating a pulse width modulation signal, and an electronic switch coupled to the control device and configured to obtain the pulse width modulation signal and arranged to connect and disconnect a second output terminal portion to/from a reference potential in accordance with the pulse width modulation signal, such as to supply a pulse width modulated voltage to the output terminal. A pulse shaping unit is coupled to the control device.
Abstract:
A lighting device, such as a LED module, comprising an elongated support structure having a longitudinal direction and electrically-powered light radiation sources distributed along the support structure, the support structure including at least one light-permeable layer, one or more optical signal sources coupled with the light-permeable layer, for injecting therein an optical signal propagating in the longitudinal direction, and one or more optical signal detectors coupled with the light-permeable layer, for detecting the optical signal injected by the optical signal source(s).
Abstract:
A support structure for lighting devices, the support structure includes a ribbon-like support member with electrically conductive lines with mounting locations for electrically powered light radiation sources. The structure includes a sequence of adjacent units having opposed end regions and is severable between mutually facing end regions of adjacent units in the sequence. The units include, at the end regions, at least one electrical connection formation. The electrical connection formation includes a proximal portion electrically coupled to the electrically conductive lines of the respective unit, and a distal portion electrically insulated from the proximal portion. The distal portion is electrically coupled to the distal portion of an electrical connection formation provided in an adjacent unit to the respective unit in the sequence of adjacent units and is separable therefrom by severing the support structure.
Abstract:
A lighting device may include a mounting board with first and second opposed faces and vias extending therethrough, one or more light radiation sources mounted on the first face of the mounting board, drive circuitry for the light radiation source mounted on the second face of the mounting board, with electrically conductive lines between the light radiation source and the drive circuitry passing through said vias, a vat-like holder housing the mounting board with the light radiation source and the drive circuitry mounted thereon. The holder has cavities for receiving therein the drive circuitry with the first face of the mounting board and the light radiation source mounted thereon facing outwardly of the holder. Over the first face of the mounting board at least one sealing layer is applied, which ensures an IP grade protection of device.
Abstract:
A method for mounting planar lighting modules on a mounting surface may include: providing on opposite sides of the lighting module fixing indentations opening toward the aforesaid sides, superimposing on said opposite sides of the lighting module stiffening bars having lateral lobes extending into said indentations, and fixing to the mounting surface the stiffening bars superimposed on the opposite sides of the lighting module with the opposite sides of the lighting module sandwiched between the stiffening bars and the mounting surface, whereby the stiffening bars urge the lighting module toward the mounting surface.
Abstract:
A mounting support for solid-state light radiation sources and for drive circuitry associated therewith may include a printed circuit board having a mounting surface for the light radiation sources, the printed circuit board having at least one through hole extending through it, and at least one electrical component of the drive circuitry inserted in the at least one hole.
Abstract:
A method for forming support structures for electrically-powered lighting devices, the method comprising: providing an electrically insulating ribbon-like substrate, forming electrically-conductive lines on a surface of the substrate by screen printing of electrically-conductive ink, the screen printing comprising printing a plurality of repeated printed images, which follow one another along a longitudinal direction and are separated from each other by separation gaps, and forming electrically-conductive ink jumpers that extend through the separation gaps and which provide electrical continuity between electrically-conductive lines of adjacent printed images, wherein forming ink jumpers comprises delivering electrically-conductive ink by inkjet printing.
Abstract:
A lighting device, such as a LED module, comprising an elongated support structure having a longitudinal direction and electrically-powered light radiation sources distributed along the support structure, the support structure including at least one light-permeable layer, one or more optical signal sources coupled with the light-permeable layer, for injecting therein an optical signal propagating in the longitudinal direction, and one or more optical signal detectors coupled with the light-permeable layer, for detecting the optical signal injected by the optical signal source(s).
Abstract:
In various aspects of this disclosure, a support structure for lighting devices is provided. The support structure includes a ribbon-like support member with electrically conductive lines with mounting locations for electrically powered light radiation sources. The structure includes a sequence of adjacent units having opposed end regions and is severable between mutually facing end regions of adjacent units in the sequence. The units include, at the end regions, at least one electrical connection formation. The electrical connection formation includes a proximal portion electrically coupled to the electrically conductive lines of the respective unit, and a distal portion electrically insulated from the proximal portion. The distal portion is electrically coupled to the distal portion of an electrical connection formation provided in an adjacent unit to the respective unit in the sequence of adjacent units and is separable therefrom by severing the support structure.
Abstract:
An electronic component may include e.g. a solid-state light radiation source, preferably a LED light radiation source, is provided with electrical contact pads for soldering onto a mounting board. The electrical contact pads are arranged over a soldering area having a central portion and a peripheral portion surrounding said central portion.The electrical contact pads include at least one first electrical contact pad arranged at central portion of the soldering area, and at least one second electrical contact pad arranged at peripheral portion of the soldering area.