Abstract:
An assembly and a method is provided where the LED module includes a plurality of module units interconnected between common connection lines in a sequential order with increasing distances towards a connection terminal of the LED module. The circuit assembly includes an output terminal having a first output terminal portion and a second output terminal portion, a main power supply for supplying an operation voltage potential to a first output terminal portion, a control device for generating a pulse width modulation signal, and an electronic switch coupled to the control device and configured to obtain the pulse width modulation signal and arranged to connect and disconnect a second output terminal portion to/from a reference potential in accordance with the pulse width modulation signal, such as to supply a pulse width modulated voltage to the output terminal. A pulse shaping unit is coupled to the control device.
Abstract:
Various embodiments may relate to a power supply unit, including an output for outputting an operating current depending on an internal measurement signal, a communications line, and a current-measuring device, which is connected to the communications line. The current-measuring device is designed to generate a current on the communications line which is proportional to the conductance of a current-setting resistance. The current-measuring device has a current mirror, which is designed to mirror the generated current on the communications line. The current-measuring device is designed to convert the mirrored current into an internal measurement signal with a reference potential which is different than the communications line. At least one light source module is connectable to the output, wherein the at least one light source module has the current-setting resistance, which is connectable to the communications line.
Abstract:
A converter circuit may include: a first node receiving an input voltage; a second node providing an output voltage; a first inductor between the first node and a third node; a capacitor between the third node and a first terminal of a diode, the other terminal of the diode providing said output voltage; a second inductor between the first terminal of the diode and common; an electronic switch acting between the third node and common; a first current generator acting between the first node and the switch to drive the switch to the conductive condition; and a second current generator sensitive to the current through the switch in the “on” condition and/or the output voltage on the second node, the second current generator to draw current from the first current generator to drive the switch to the non-conductive condition.
Abstract:
A method for driving one or more electrically powered light sources, such as LED modules, may include applying a pulse-width-modulated signal thereto having a pulse-repetition frequency and a duty-cycle, the duty-cycle being selectively variable in order to vary the intensity of light emitted by the light source or light sources. To counter the occurrence of temporal light artefacts, or TLAs, the method may include frequency modulating the pulse-width-modulated signal (VPWM) by varying the pulse-repetition frequency thereof around a certain value between a lower frequency value and a higher frequency value, thus giving rise to a signal with combined FM/PWM modulation.
Abstract:
An electronic converter comprising a switching stage comprising at least one electronic switch, wherein the switching stage is adapted to provide a current via a terminal; a first capacitor, wherein the first capacitor provides a first voltage. Specifically, converter further comprises: a second capacitor, wherein the second capacitor provides a second voltage, comparison means configured to detect the difference between the first voltage and the second voltage, and determine a comparison signal which indicates whether this difference is greater than a threshold, and switching means configured to transfer selectively current to the first capacitor or the second capacitor as a function of the comparison signal.
Abstract:
Various embodiments may relate to a power supply unit including an output for outputting a current, a communications line, a current-measuring device and a microcontroller including an analog-to-digital converter. The current-measuring device generates a current on the communications line which is proportional to the conductance of a current-setting resistance, the current is convertable into a digital value by the analog-to-digital converter, the power supply unit assumes various operating states based on the digital value of the measured current, and at least one light source module is connectable to the output, wherein the at least one light source module has the current-setting resistance, which is connectable to the communications line. Various embodiments may further relate to a light source module including an input, a communications line and a current-setting resistance for setting the current applied to the light source module.
Abstract:
A lighting module may include at least one light source, and an identification element that identifies the supply current required by the light source, wherein the identification element includes a first terminal and a second terminal for connection to an electronic converter.In particular, the identification element includes at least one shunt regulator configured for limiting the voltage across the first terminal and the second terminal to a maximum threshold voltage, wherein the maximum threshold voltage identifies the supply current required by the light source.
Abstract:
Various embodiments may relate to a power supply unit including an output for outputting a current, a communications line, a current-measuring device and a microcontroller including an analog-to-digital converter. The current-measuring device generates a current on the communications line which is proportional to the conductance of a current-setting resistance, the current is convertable into a digital value by the analog-to-digital converter, the power supply unit assumes various operating states based on the digital value of the measured current, and at least one light source module is connectable to the output, wherein the at least one light source module has the current-setting resistance, which is connectable to the communications line. Various embodiments may further relate to a light source module including an input, a communications line and a current-setting resistance for setting the current applied to the light source module.
Abstract:
A converter, for feeding a load via an inductor, includes a switch to permit or prevent the feeding of current towards inductor, and a current sensor with a resistor coupled to the converter output, adapted to sense the current through said inductor when switch is off. A further switch is provided which is conductive when said switch is turned off; moreover, a drive circuitry is provided which is coupled to current sensor to turn said switch on as a function of the detected current. Drive circuitry is fed by a bootstrap circuit which includes: a bootstrap capacitor to accumulate a feeding charge for drive circuitry and coupled to the converter output and to a bootstrap diode, a coupling capacitor interposed between said further switch and bootstrap diode, as well as a bootstrap resistor interposed between a power supply source and bootstrap diode to charge coupling capacitor therefrom.
Abstract:
An electronic converter comprising a switching stage having at least one electronic switch, wherein the switching stage is configured to provide current pulses via a terminal; a first capacitor, wherein the first capacitor provides a first voltage. Specifically, the electronic converter further includes a second capacitor to provide a second voltage, comparison means configured to detect the difference between the first voltage and the second voltage, and determine a comparison signal which indicates whether this difference is greater than a threshold, and switching means configured to selectively transfer the current to the first capacitor or the second capacitor as a function of the comparison signal. The switching means may include a SCR, where the anode of the SCR is connected to the terminal that provides current pulses and where the cathode of the SCR is connected to the second capacitor.