Abstract:
An electronic component may include e.g. a solid-state light radiation source, preferably a LED light radiation source, is provided with electrical contact pads for soldering onto a mounting board. The electrical contact pads are arranged over a soldering area having a central portion and a peripheral portion surrounding said central portion.The electrical contact pads include at least one first electrical contact pad arranged at central portion of the soldering area, and at least one second electrical contact pad arranged at peripheral portion of the soldering area.
Abstract:
A light fixture may include a plurality of elongate members, each extending between opposed ends and carrying one or more light radiation sources, such as LEDs, and at least one hinge member which mechanically couples one end of one of the elongate members to one end of another of the elongate members. Thus the hinge member allows the orientation of the elongate members between: an open position, wherein the elongate members extend in sequence with each other in a common direction, and a closed position, wherein the elongate members extend side by side.
Abstract:
Various embodiments relate to a lighting module. The lighting module includes at least one light source, regulating means for regulating the brightness of the light emitted by the at least one light source, and a control unit configured for receiving a brightness control signal, and driving the regulation means as a function of the brightness control signal, wherein the control unit is configured for: verifying whether the brightness control signal contains a digital communication signal, and if the brightness control signal includes a digital communication signal, detecting the data transmitted via the digital communication signal and driving the regulating means as a function of the transmitted data, or if the brightness control signal does not includes a digital communication signal, driving the regulating means as a function of the brightness control signal.
Abstract:
A device for mounting lighting sources on a substrate includes a channel-like mounting frame provided with fixing formations for fixing on said substrate, said mounting frame defining a cavity for receiving said lighting source with said lighting source resting on said substrate, a slider member which can be positioned in said cavity of said mounting frame to urge said lighting source toward said substrate; said slider member being slidable with respect to said mounting frame between an insertion position and a locking position, wherein said mounting frame and said slider member bear complementary engagement formations cooperating in a ramp-like manner to force said slider member and the lighting source urged thereby toward said substrate when said slider member is advanced from said insertion position toward said locking position.
Abstract:
A method for mounting planar lighting modules on a mounting surface may include: providing on opposite sides of the lighting module fixing indentations opening toward the aforesaid sides, superimposing on said opposite sides of the lighting module stiffening bars having lateral lobes extending into said indentations, and fixing to the mounting surface the stiffening bars superimposed on the opposite sides of the lighting module with the opposite sides of the lighting module sandwiched between the stiffening bars and the mounting surface, whereby the stiffening bars urge the lighting module toward the mounting surface.
Abstract:
In order to counter heat propagation between adjacent sections of a ribbon-like printed circuit board, the sections being individually exposed to heat between opposed border lines, with printed circuit board including an electrically insulating substrate with electrically conductive pads for mounting components thereon, the adjacent sections are terminated at the opposed border lines with at least one electrically conductive borderline pad, which has a separation gap to the border line, and/or is coupled to an electrically conductive line extending on substrate between a first end at borderline pad and a second end away from borderline pad. The first end and the second end may be located at a first and at a second distances to border line, the second distance being longer than the first distance, and/or the electrically conductive line may have a narrower cross section than the first and the second ends.
Abstract:
A mounting device for mounting on a substrate a plate or board-like lighting source may include a frame member for surrounding the plate or board-like lighting source, anchoring formations for anchoring the frame member onto the substrate while permitting movement of the frame member towards and away from the substrate, elastic means for elastically urging the frame member towards the substrate, and one or more locking members mounted on the frame member and radially displaceable with respect to the frame member between: a radially outward position, in which the plate or board-like lighting source can be inserted into the frame member and positioned between the frame member and the substrate, and a radially inward position, in which the locking member(s) abuts/abut against the plate or board-like lighting source located between the frame member and the substrate, elastically urging the plate or board-like lighting source towards the substrate.
Abstract:
A method for mounting planar lighting modules on a mounting surface may include: providing on opposite sides of the lighting module fixing indentations opening toward the aforesaid sides, superimposing on said opposite sides of the lighting module stiffening bars having lateral lobes extending into said indentations, and fixing to the mounting surface the stiffening bars superimposed on the opposite sides of the lighting module with the opposite sides of the lighting module sandwiched between the stiffening bars and the mounting surface, whereby the stiffening bars urge the lighting module toward the mounting surface.
Abstract:
A lighting device includes a tray-like housing with a base wall, at least one light radiation source on the base wall of the housing, having electrical contact pads in an opposite position from the base wall of the housing, and a circuit board on the base wall of the housing with electrically conductive lines extending on the face of the board opposite from the base wall of the housing, with respective electrical contact pads placed in positions facing the electrical contact pads of the light radiation source. At least one optical element is provided, with a light input to collect light radiation at the light radiation source and one or more light outputs to project light radiation from the lighting device. The optical element has an electrically non-conductive base wall which urges the light radiation source or sources and the circuit board toward the base wall of the housing.
Abstract:
A mounting support for solid-state light radiation sources and for drive circuitry associated therewith may include a printed circuit board having a mounting surface for the light radiation sources, the printed circuit board having at least one through hole extending through it, and at least one electrical component of the drive circuitry inserted in the at least one hole.