Abstract:
A circuit arrangement for connecting a plurality of LED modules in parallel comprises a positive pole terminal and a negative pole terminal for connecting a driver, a positive pole terminal line for electrically connecting the positive pole terminal to the modules, a negative pole terminal line for electrically connecting the negative pole terminal to the modules, a plurality of positive pole terminal contacts for electrically connecting the positive pole terminal line to anode terminal contacts of the modules, and a plurality of negative pole terminal contacts for electrically connecting the negative pole terminal line to cathode terminal contacts of the modules.
Abstract:
The invention relates to a circuit assembly for operating at least one lighting means, comprising at least one master device; at least one slave device; and a bus system having at least one bus, by means of which bus system the at least one master device and the at least one slave device are coupled; wherein the bus is designed as a two-wire cable, wherein the at least one master device has at least one feeding connection, which is coupled to the bus and is designed to place a control signal on the bus, wherein the at least one master device is coupled to a first voltage supply; wherein the at least one slave device comprises a non-feeding connection, which is coupled to the bus, wherein the slave device comprises a connection for at least one lighting means, a second voltage supply, and a read-out device for reading out the control signal on the bus, wherein the read-out device comprises a potential-isolating device and wherein the connection for the at least one lighting means and the second voltage supply are provided on the side of the read-out device isolated from the bus with regard to potential.
Abstract:
An electronic ballast for operating at least one first cascade of LEDs may include an input for coupling to an AC supply voltage, a rectifier that is coupled to the input, wherein the rectifier has an output having a first and a second output connection, a first unit that includes the first cascade of LEDs, wherein the first unit is coupled to the first output connection of the rectifier, a series circuit including an inphase regulator and a shunt resistor, wherein the series circuit is coupled between the first unit and the second output connection of the rectifier, a setpoint value prescribing apparatus for the inphase regulator having an output that is coupled thereto, wherein the setpoint value prescribing apparatus provides a first setpoint value element at its output, and a second setpoint value element—superimposed on the first setpoint value element—for the inphase regulator.
Abstract:
A method for transmitting control information from a control apparatus to an operating device for a light-emitting means may include a) modulating control information onto a supply line by means of the control apparatus during a modulation phase, wherein a switchable shunt of the device is connected between the first and second supply connections; b) decoding the control information in a decoder of the device; b1) activating the demodulation by the decoder when the absolute value for the voltage at the two supply connections falls below a first threshold value; and c) actuating a converter of the operating device in accordance with the decoded control information.
Abstract:
Various embodiments may relate to an electronic ballast for operating at least a first and a second cascade of LEDs, wherein the first cascade of LEDs is designed in such a way that the first cascade of LEDs is not be bridged. In order to provide a target value for a series regulator arranged in series with the LED cascades, a resistance voltage divider is used, which is coupled between the coupling point of the LED cascade that is not bridged and of the LED cascade that is not bridged at one end and the second output connection of the rectifier at the other end.
Abstract:
A circuit arrangement for an LED luminaire comprises a plurality of LED strings, an anode terminal line, a cathode terminal line, a plurality of first switching elements, connected in series into the anode terminal line and subdivided into individual line sections, and a plurality of second switching elements, connected in series into the cathode terminal line and subdivided into individual line sections. Each of the LED strings may be connected to the anode terminal line via a first switching element and/or the second switching elements. Each of the first switching elements may be configured to feed an operating current to an LED string, to electrically connect line sections if the current flowing through the LED string exceeds a predetermined value, and to electrically isolate line sections if the current flowing through the LED string falls below a predetermined value.
Abstract:
An electronic ballast for operating at least one first cascade of LEDs may include an input for coupling to an AC supply voltage, a rectifier that is coupled to the input, wherein the rectifier has an output having a first and a second output connection, a first unit that includes the first cascade of LEDs, wherein the first unit is coupled to the first output connection of the rectifier, a series circuit including an inphase regulator and a shunt resistor, wherein the series circuit is coupled between the first unit and the second output connection of the rectifier, a setpoint value prescribing apparatus for the inphase regulator having an output that is coupled thereto, wherein the setpoint value prescribing apparatus provides a first setpoint value element at its output, and a second setpoint value element—superimposed on the first setpoint value element—for the inphase regulator.
Abstract:
A circuit arrangement for an LED luminaire comprises a plurality of LED strings, an anode terminal line, a cathode terminal line, a plurality of first switching elements, connected in series into the anode terminal line and subdivided into individual line sections, and a plurality of second switching elements, connected in series into the cathode terminal line and subdivided into individual line sections. Each of the LED strings may be connected to the anode terminal line via a first switching element and/or the second switching elements. Each of the first switching elements may be configured to feed an operating current to an LED string, to electrically connect line sections if the current flowing through the LED string exceeds a predetermined value, and to electrically isolate line sections if the current flowing through the LED string falls below a predetermined value.
Abstract:
A method for transmitting control information from a control apparatus to an operating device for a light-emitting means may include a) modulating control information onto a supply line by means of the control apparatus during a modulation phase, wherein a switchable shunt of the device is connected between the first and second supply connections; b) decoding the control information in a decoder of the device; b1) activating the demodulation by the decoder when the absolute value for the voltage at the two supply connections falls below a first threshold value; and c) actuating a converter of the operating device in accordance with the decoded control information.
Abstract:
The invention relates to a circuit assembly for operating at least one lighting means, comprising at least one master device; at least one slave device; and a bus system having at least one bus, by means of which bus system the at least one master device and the at least one slave device are coupled; wherein the bus is designed as a two-wire cable, wherein the at least one master device has at least one feeding connection, which is coupled to the bus and is designed to place a control signal on the bus, wherein the at least one master device is coupled to a first voltage supply; wherein the at least one slave device comprises a non-feeding connection, which is coupled to the bus, wherein the slave device comprises a connection for at least one lighting means, a second voltage supply, and a read-out device for reading out the control signal on the bus, wherein the read-out device comprises a potential-isolating device and wherein the connection for the at least one lighting means and the second voltage supply are provided on the side of the read-out device isolated from the bus with regard to potential.